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Appendix
In this Appendix, we provide additional clarifications, ex-
periments, and results as follows:
• Appendix 6: Additional implementation details of our

method
• Appendix 7: Implementation details of rendered image

augmentation
• Appendix 8: Implementation details of competitors and

ablation choices
• Appendix 9: Additional details on SUN2CAD dataset
• Appendix 10: Additional experimental results
• Appendix 11: Additional qualitative results
• Appendix 12: Additional ablation studies
• Appendix 13: Failure cases
• Appendix 14: Societal impact

6. Additional Implementation Details of Our
method

6.1. Training details and hyperparameters
For training the feature adapter, we use the AdamW opti-
mizer [31] with a constant learning rate of 3e→4, a batch
size of 140, and ω

+
dist = 0.02, ω→dist = 0.4, ω→feat = 0.75, ε = 0.5,

ϑ = 0.1, ϖ = 0.5. The dense alignment is optimized with
the Adam optimizer at a constant learning rate of 0.005 and
ϱNOC-A = 0.33, ϱm = 3.0, ϱd = 0.27.

6.2. Template Rendering
To render templates that cover the entire CAD model, we
render each CAD model into 36 templates using Blender,
varying 3 elevation angles and 12 azimuth angles. Each an-
gle is randomly sampled from a mean of [10, 20, 30]↑ for
elevation and [0, 30, 60, . . . , 330]↑ for azimuth, with a stan-
dard deviation of 2, allowing us to capture a broader range
of perspectives around the CAD model. The examples of
templates are shown in Figure 7.

6.3. Feature Voxel Grid
We used 36 rendered templates with corresponding NOC
pairs, augmenting each template into 7 variations (see Ap-
pendix 7), resulting in a total of 288 images (36 original +
252 augmented) for constructing a feature voxel grid of size
100→100→100. Augmented image features were averaged
with a weight of 0.071 per image, while rendered images
were assigned a weight of 0.5. To smooth the voxel grid, we
applied a two-step downsampling and upsampling process
using linear interpolation. The grid was first downsampled
by factors of 2 and 4, then upsampled back to its original

size. The final voxel grid was obtained by a weighted av-
erage of these versions, with weights of 0.6 for the original
size, 0.25 for the 2! downsampled version, and 0.15 for the
4! downsampled version.

6.4. Feature Adapter Training Data
To generate our training data, we use ShapeNet [7] dataset,
which contains a collection of normalized, canonically
aligned 3D models. We select models from nine categories
that also appear in ScanNet25k [11] (bathtub, bed, bin,
bookshelf, cabinet, chair, display, sofa, and table), totaling
2k 3D models. Each model is rendered into 36 templates,
following Section 6.2, resulting in 72k rendered training im-
ages and NOC pairs. Each template image is further aug-
mented into seven variations and filtered (see Section 7),
leading to a final dataset of 300k training images for the fea-
ture adapter. Note that we use this feature adapter, which is
trained on only nine object categories, to evaluate 20 unseen
categories in SUN2CAD.

To validate the design choices, we reserved 2k annota-
tions from the ScanNet training set and used them for vali-
dation purposes only.

6.5. Object Mask Generation
For processing ScanNet25k [11] scene images, we use
object bounding boxes and retrieved CAD models from
ROCA [18]. We then apply Segment Anything (SAM) with
ViT-G [13] to generate segmentation masks from the bound-
ing box prompts.

6.6. Metric Depth Estimator
We fine-tuned metric depth estimators on the training im-
ages of ScanNet25k [11] and SUN-RGBD [45] in the
SUN2CAD dataset for use in comparisons in Section 4. We
follow the codebase of DepthAnything [50] by fine-tuning
their pre-trained ViT-L relative depth estimator with image-
metric depth map pairs from each dataset. The training was
performed with a learning rate of 5e→5 and a batch size of
24.

For ScanNet25k, we used 20k image-depth pairs from
the training set, splitting them into 19k for training and 1k
for validation. Depth maps were masked to retain only pix-
els with values > 0.01, and the mask was dilated by 11
pixels to reduce aliasing and noise.

For SUN2CAD, we used 7k images from SUN-RGBD
that are in the scene and do not overlap with scenes that ap-
peared in our 550 testing images. We split them into 6.5k
for training and 500 for validation. Since SUN-RGBD con-
tains images from multiple sources and cameras, we first



normalized all depth maps by resizing them to 518→392 and
converting them into canonical inverse depth maps using
C = f/D (following [3]), where f is the focal length, D
is the metric depth, and C is the inverse depth. We applied
the same depth masking and dilation procedure as in Scan-
Net25k. We then fine-tuned DepthAnything on the masked
inverse depth maps. During inference, metric depth maps
were reconstructed using the focal length of each test image
via D = f/C.

In Section 4.2, we use a metric depth estimator that has
never been trained on ScanNet [11] dataset for a fair com-
parison with DiffCAD [16], which is the official DepthAny-
thing [50] Indoor Metric Depth Estimator (ViT-L) trained
on NYU dataset [10].

6.7. Visualization of Learned Space

Here we provide implementation details for the feature vi-
sualization in Fig. 3 in the main paper. Given a rendered
image (Row 1 or 3), we extract a patchwise feature map
using either DINOv2 or our feature adapter and obtain its
corresponding ground-truth NOC map rom the CAD model
we rendered. We then reduce the feature dimensions to two
using PCA and visualize them as 2D points in the last two
columns. Each feature point is colored based on its corre-
sponding NOC value by mapping (x, y, z) into (r, g, b). The
same procedure is applied to real image inputs (Row 2 or 4)
using the ground-truth, pose-aligned CAD model to gener-
ate the NOC maps.

7. Implementation Details of Rendered Image
Augmentation

Renderings often have limited texture and solid color back-
grounds, creating a domain gap with real images. We fol-
low DST3D [32] to generate realistic renderings with natu-
ral backgrounds, using Stable Diffusion (SD) [42]. While
DST3D uses ControlNet [54] to guide image generation
with a Canny edge map, we further enhance image fi-
delity by incorporating multiple visual prompts (Canny
edge, depth, and sketch of the renderings) through UniCon-
trolNet [55].

However, rarely seen images, such as the back of a cab-
inet, are challenging for the diffusion model to generate.
Such generated images result in artifacts that reduce pose
prediction performance. To address this, we propose filter-
ing out poorly generated images based on our NOCS pre-
diction error (See an ablation study in Appendix 12.2). Ex-
amples of augmented templates are shown in Figure 8, with
filtered-out templates highlighted in red boxes.
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Figure 7. Rendered templates used in a feature voxel grid and
the geometry-aware feature adapter.
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Figure 8. Augmented templates used in a feature voxel grid
and the geometry-aware feature adapter. Annotated red boxes
refer to invalid generated images with a wrong viewpoint shifted
from their original renderings on the top row.

8. Implementation Details of Competitors and
Ablation Choices

In this section, we provide implementation details for evalu-
ating DiffCAD, FoundationPose, and SPARC in our setting,
where scores are computed using their official code. For
ROCA, scores are reported as provided in their paper. We
also provide details for the dense alignment using features
(FM), as presented in the ablation study in Section 4.4.

8.1. DiffCAD
We use DiffCAD’s [16] official model weights and code to
generate eight pose hypotheses per sample across six cate-



gories in their ScanNet25k test subset. We then report the
best hypothesis’s alignment accuracy in Table 1, denoted as
DiffCAD (GT), as a reference to validate our reproduction
of their results.

To compute DiffCAD (mean), we calculate translation,
scale, and rotation errors for each hypothesis, average them
per parameter, and determine alignment accuracy based on
standard thresholds used in previous works [18] as: trans-
lation error ↑ 20 cm, rotation error ↑ 20↑, and scale error
↑ 20% relative to the ground truth.

For DiffCAD (err), we use their codebase to select the
best hypothesis based on transformation error on their pre-
dicted 2D-3D correspondences. Given X as the set of se-
lected 2D coordinates with depth values, Yi as the predicted
3D coordinates for the ith hypothesis, and Ti as the solved
transformation, the optimal hypothesis is the one minimiz-
ing ||Yi · TT

i
↓X||2.

8.2. FoundationPose
We use FoundationPose [49]’s officially released model to
generate 6-DoF poses on ScanNet25k [11] and SUN2CAD
datasets.

For ScanNet25k, we obtain a pair of a 2D bounding box
and its corresponding CAD model from ROCA’s results.
These bounding boxes are processed into 2D object masks
using SAM [22], consistent with our method. We also use
the same fine-tuned DepthAnything [50] to predict a depth
map for each image. To enable fair comparison with our 9-
DoF method, we scale the CAD models in two ways: 1) by
ground truth scale for the 6-DoF setting and 2) by ROCA’s
predicted scale for the 9-DoF setting.

For the SUN2CAD dataset, we use a pair of 2D masks
and CAD models as input, with depth maps generated by
fine-tuned DepthAnything on the SUN RGB-D training
split. As with ScanNet25k, we scale the CAD models by
their ground-truth scale for the 6-DoF setting.

8.3. SPARC
We follow SPARC [26]’s officially released model weights
and code to produce 9-DoF alignment prediction of the
SUN2CAD dataset. We utilize depth maps from fine-tuned
DepthAnything [50] on SUN RGB-D [45], along with 2D
bounding boxes and CAD model pairs from the dataset, as
used by other competitors.

In addition to RGB-D images and detected objects,
SPARC requires surface normals for both the RGB images
and CAD model point clouds. We sample 1,000 surface
points and their corresponding normals from each CAD
mesh using Trimesh. For image normals, we use Met-
ric3Dv2 [20], a state-of-the-art zero-shot normal estimator,
to generate them for all images.

We follow the inference procedure instructed in the pa-
per by initializing the translation using the x and y position

at the middle point of a 2D bounding box and z = 3. We
apply median scaling of the 3D model’s category and vary
azimuth rotation across [0, 90, 180, 270]↑ with a fixed eleva-
tion angle of 15↑, resulting in 4 hypotheses. Each hypoth-
esis is refined 3 times, and the best hypothesis is selected
using their trained classifier for further pose evaluation.

8.4. Feature-based Dense Alignment
This section provides detailed information on dense align-
ment using DINOv2 features for ablation studies in Sec-
tion 4.4. The method is inspired by the featuremetric op-

timization refinement method from FoundPose [37]. The
goal of featuremetric optimization (FM) is to refine ini-
tial 2D-3D correspondences by minimizing projection er-
rors using foundation features. This addresses the misalign-
ment of large 14 → 14 patch-wise features, whose derived
2D coordinates (e.g., the patch center) may not precisely
correspond to their 3D counterparts.

To mitigate this, the method optimizes pose by minimiz-
ing discrepancies between features at 3D coordinates (from
a CAD model’s rendered templates) and their correspond-
ing 2D projections in the input image’s feature map. The
objective function is:

∑

(xi,pi)↓Tt

ς (pi ↓ Fq (φ(xi))) , (6)

where ς is a cost function, (pi, xi) ↔ Tt is a 3D coordi-
nates and its paired feature, Fq is a 2D feature map, and φ

is a learnable 2D projection function. Following the origi-
nal algorithm, we reimplement the method using our feature
voxel grid to represent 3D model features. We initialize φ

with the coarse alignment pose and tune other hyperparam-
eters for optimal performance. We employ PyTorch3D [40]
and optimize the loss using Adam with a learning rate of
0.005. We use L1 loss as the cost function and bilinear in-
terpolation for 2D feature sampling via grid sampling.

9. Additional Details on SUN2CAD Dataset
To evaluate our alignment method on unseen or less com-
mon object categories, we establish a new inexact match
9-DoF pose alignment test set spanning 20 categories with
550 images.

The primary challenge in aligning images with 3D mod-
els is the ambiguity in z-axis translation and scaling, which
persists even with manual alignment. We address this us-
ing 3D bounding box annotations from the SUN-RGBD
dataset [45], which provides real RGB-D images of room
scenes derived from 3D scans. These bounding boxes were
used as our initial pose, as the bounding box centroid will be
a translation, the bounding box size will be used as a scale,
and the annotated bounding box orientation will be treated
as a rotation.



To map between the 3D model and 2D image, we select
LVIS categories [19] that are contained in both SUN-RGBD
and CAD models from Objaverse [12] or ShapeNet [7].
For each SUN-RGBD object, we manually choose the most
suitable CAD model of the same category and render it to
fit the 3D bounding box, then refine its pose by manually
rotating the 3D model for more precise alignment. To min-
imize annotation errors, we exclude objects with incorrect
3D bounding boxes or insufficient edge cues for alignment.
We also label object symmetry types following the Scan-
Net25K baseline: asymmetry, 2-side symmetrical, 4-side
symmetrical, and all-side symmetrical.

LVIS category selection is prioritized based on 2D
object-CAD similarity, frequency in SUN-RGBD scenes,
and object categories with varied and distinct shapes or
parts that are different from ScanNet25k’s 9 original cate-
gories. Initially considering over 50 categories, we finalize
20 categories: basket, bicycle, blender, broom, clock, cof-
fee maker (coffmkr), crib, fire extinguisher (fireext), key-
board (keybrd), ladder, lamp, mug, piano, printer, re-
mote control, shoe, telephone, toaster oven, vase, and wa-
ter bottle. The quantity of each category is shown in Ta-
ble 2.

Additionally, we aim to simulate a real-world scenario
where a user selects a CAD model and object category, and
the system automatically aligns it with the scene. Instead of
relying on high-quality 2D segmentation masks provided by
SUN-RGBD, we predict the segmentation using Grounded-
SAM [41], which enables automatic extraction of segmen-
tation masks based on object category.

The samples of SUN2CAD dataset are shown in Fig-
ure 20, Figure 21, and Figure 22.

10. Additional Experimentsal Results
10.1. Additional Results on Experiment 4.1
We present a detailed comparison of translation, rotation,
and scaling accuracies across competitors on the Scan-
Net25k dataset in Table 4. All accuracies are computed
using the same thresholds defined in Section 4.

In the weakly supervised 9-DoF setting, our method out-
performs the 9D adapted FoundationPose [49], designed for
exact 6-DoF pose matching, in both translation and rotation
for 7/9 categories, achieving better average parameter accu-
racies. When compared to supervised 9-DoF, ROCA [18],
we achieve better translation accuracy in 8/9 categories and
rotation accuracy in 4/9 categories. However, when com-
pared to SPARC [26], the strongest supervised baseline, our
method exceeds performance in only 2/9 categories for both
translation and rotation, revealing a remaining performance
gap. Notably, the two supervised methods benefit from ei-
ther learning object scaling during training or incorporat-
ing median object scaling during initialization, whereas our

method does not rely on such priors.
In the weakly supervised 6-DoF setting, our adapted 6D

solution surpasses FoundationPose [49] in translation for
7/9 categories and in rotation for 8/9 categories, also achiev-
ing higher mean accuracy for both parameters.

For a detailed comparison with DiffCAD [16], the state-
of-the-art weakly supervised 9-DoF estimator, we present
results in Table 5. Our method outperforms DiffCAD
(mean) in translation and rotation for 5/6 categories and
scaling for 4/6 categories. Additionally, we exceed Diff-
CAD (Err) in translation, scaling, and rotation for 4/6 cate-
gories. Overall, our approach achieves the highest average
accuracy across all parameters.

10.2. Additional Results on Experiment 4.3
We also present a detailed comparison of each transfor-
mation parameter across competitors on the SUN2CAD
dataset in Table 6. Alignment accuracies are computed us-
ing the same thresholds defined in Section 4. We also pro-
vided the mean and standard error statistics of each param-
eter for comparison. In the 9-DoF setting, we beat DINOv2
in both accuracies and errors for all parameters. We also
beat SPARC [26] in translation and scaling accuracy, but for
rotation, we have a lower average rotation error by ↓7.9%
with p-value = 0.0219, which is significant. These results
indicate that SPARC struggles with the translation and scal-
ing of unseen objects, while it remains somewhat effective
in rotation but not as much as our method. While in the in-
exact 6-DoF setting, we outperform FoundationPose [49] in
all metrics.

10.3. Comparison on Unseen Categories in Scan-
Net25k

We removed one of the nine categories in ScanNet25k [11]
used for training and tested single-view accuracies [16]
on this removed category to assess the robustness of un-
seen categories. To do a comparison, we introduce a new
baseline called Real-data NOC regressor (NOC-R). NOC-
R is similar to NOC-S, except it is trained on real in-
door scenes from ScanNet25k [2] dataset, with ground-truth
NOC maps generated from CAD models and their pose
annotations. This baseline represents what happens if a
category-specialized model faces unseen categories.

Table 7 shows that our method experiences only a
small drop of {↓0.4%,↓0.8%} compared to our variant
that trained on all categories, and it still outperforms DI-
NOv2 [36] by {+5.6,+5.0%}. In contrast, the strong
supervised baseline NOC-R suffers a significant drop by
{↓19.2%,↓24.2%}. Figure 9 visualizes the differences
in NOC map predictions for seen vs. unseen categories,
highlighting wrong predicted distributions in unseen NOC-
R compared to our unseen model.



Pose Sup Method bathtub bed bin bkshlf cabinet
Tr Sc Ro Tr Sc Ro Tr Sc Ro Tr Sc Ro Tr Sc Ro

9D

✁ ROCA [18] 48.9 77.8 55.6 21.2 87.9 51.5 56.4 76.0 57.3 21.3 46.2 66.5 19.3 59.8 64.2
✁ SPARC [26] 51.6 69.6 68.5 40.0 80.0 56.9 62.8 71.3 55.3 22.7 56.6 68.7 27.1 64.5 68.9
↼ FoundationPose [49] (for 9D) 35.1 77.8 37.4 29.2 87.9 36.9 61.5 76.0 38.5 6.5 46.2 5.5 6.8 59.8 7.2
↼ Ours 43.8 51.7 39.3 29.2 46.2 61.5 67.3 70.8 34.6 22.3 38.3 52.3 20.2 39.7 55.1

6D ↼ FoundationPose [49] 51.1 - 37.8 27.7 - 30.8 64.7 - 30.8 13.9 - 12.4 8.0 - 10.4
↼ Ours (for 6D) 48.9 - 38.6 29.7 - 59.4 69.8 - 40.1 23.6 - 46.7 26.3 - 49.0

Pose Sup Method chair display sofa table Avg.
Tr Sc Ro Tr Sc Ro Tr Sc Ro Tr Sc Ro Tr Sc Ro

9D

✁ ROCA [18] 45.2 93.6 57.9 43.8 62.2 51.6 27.8 59.8 63.9 21.5 69.0 61.8 36.0 76.8 59.5
✁ SPARC [26] 57.7 93.2 71.5 48.6 54.7 45.8 40.2 75.2 79.4 27.5 74.6 59.5 44.8 78.3 65.6
↼ FoundationPose [49] (for 9D) 46.5 93.6 48.3 34.4 62.2 36.1 22.7 59.8 36.1 26.9 69.0 42.3 35.1 76.8 37.4
↼ Ours 57.3 76.7 61.9 44.3 40.9 53.4 47.4 77.9 73.7 24.3 47.4 44.8 43.2 60.3 54.2

6D ↼ FoundationPose [49] 48.4 - 50.6 52.5 - 40.2 37.1 - 44.3 32.8 - 40.9 39.7 - 40.2
↼ Ours (for 6D) 61.3 - 65.6 67.2 - 68.4 54.6 - 77.4 27.7 - 38.3 48.2 - 54.8

Table 4. Detailed comparison on ScanNet25k [11] across 9 object categories. Tr, Sc, and Ro represent translation, scaling, and rotation
alignment accuracy. Supervised and weakly supervised baselines are marked with ‘✁’ and ‘ω’ respectively.

Method bed bkshlf cabinet chair sofa table Avg.
Tr Sc Ro Tr Sc Ro Tr Sc Ro Tr Sc Ro Tr Sc Ro Tr Sc Ro Tr Sc Ro

DiffCAD (Mean) 5.9 35.9 43.8 6.0 10.8 69.6 11.8 35.4 54.9 38.5 51.0 68.5 11.5 34.5 78.9 8.7 12.4 39.5 20.2 33.4 59.0
DiffCAD (Err) 11.1 39.8 56.9 22.5 25.8 80.1 19.2 36.7 78.5 47.9 54.4 74.5 21.8 46.7 82.3 13.9 23.9 56.9 28.6 40.5 70.6

Ours 6.7 31.9 58.5 13.5 35.3 67.3 22.7 31.5 85.2 54.5 79.6 80.3 27.0 72.5 91.5 16.4 37.9 49.6 32.3 56.6 71.5

Table 5. Detailed comparison on DiffCAD’s ScanNet25k split across 6 object categories. Tr, Sc, and Ro represent translation, scaling,
and rotation alignment accuracy.

10.4. Comparison on the Zero-Shot Capability of
Feature Adapter

We evaluate the zero-shot capability of geometry-aware fea-
tures on unseen categories in the SUN2CAD dataset. In
addition to Table 2 in the main paper, we report alignment
results using only pure geometry-aware features without fu-
sion (Ours (ϖ = 1)), to assess whether our adapted fea-
tures can inherit the generalizability of DINOv2 without
being explicitly fused. As shown in Table 8, Ours (ϖ = 1)
outperforms DINOv2 by {+2.9%,+7.0%}, demonstrating
that our standalone features generalize well to unseen cat-
egories and surpass DINOv2 in the inexact CAD model
alignment task. Nevertheless, our proposed fused feature
version (Ours) still achieves the best performance overall.

10.5. Comparison on Generalizability on Non-
textured CAD Models

We evaluate the texture sensitivity of our method by remov-
ing textures from textured CAD models and testing single-
view alignment accuracies [16] against models with tex-
tures. As shown in Table 9, our method shows a mini-
mal drop of {↓0.17%,↓0.05%} in mean accuracies, while
DINOv2 got a significant decrease of {↓0.98%,↓1.68%}
mean accuracies. This represents our method’s robustness
to the textureless CAD model over vanilla foundation fea-
tures.

10.6. Comparison on Robustness to Model Inexact-
ness

In Figure 10, we assess our method’s sensitivity to in-
put CAD model inexactness by replacing the ground-truth
model with various models from the same category and re-
porting accuracy as a function of inexactness, measured by
Chamfer distance. (We use rotation accuracy since their
shared frontal alignment ensures the same optimal rota-
tion, while shape differences affect translation and scale.)
As inexactness increases, our method degrades far less
than FoundationPose [49] (-0.14 vs -0.49), the only self-
supervised SOTA testable here; DiffCAD [16] predicts pose
before CAD retrieval and cannot take an arbitrary model.

10.7. Additional Comparison with FoundationPose
To ensure a fair comparison with FoundationPose [49] un-
der its original assumption used in its 6-DoF setting, we
evaluate it using ground-truth depth maps (FoundationPose
+ GT Depth) and our previously introduced ground-truth
object scaling. Table 10 shows a comparison of the Scan-
Net25k dataset. When given ground-truth depth maps,
FoundationPose + GT depth achieves better performance
than its default one (FoundationPose) with predicted depth
maps for all categories. Our method, which used predicted
depth, still surpasses their ground-truth depth version in 5/9
categories and in mean accuracies for both 9-DoF and 6-
DoF settings by {+1.4%,+1.7%}. and {+2.6%,+3.0%},



Pose Sup Method Avg Acc. → Avg Err. ± SE ↑
Tr Sc Ro Tr Sc Ro

9D
✁ SPARC [26] 27.82 31.53 42.00 0.4381 ± 0.0179 61.26 ± 2.79 53.12 ± 2.37
- DINOv2 55.39 32.17 24.31 0.2698 ± 0.0152 68.65 ± 5.70 62.88 ± 2.08
ω Ours 62.36 43.09 41.09 0.2374 ± 0.0134 41.17 ± 2.27 46.03 ± 1.98

6D ω FoundationPose [49] 55.81 - 26.72 0.2778 ± 0.0174 - 94.88 ± 2.88
ω Ours (for 6D) 64.72 - 41.63 0.2235 ± 0.0134 - 44.61 ± 1.97

Table 6. Comparison in single-view accuracy on SUN2CAD dataset. Tr, Sc, and Ro represent translation, scaling, and rotation alignment
accuracy/errors. Supervised, weakly supervised, and unsupervised baselines are marked with ‘✁’, ‘ω’, and ‘-’ respectively.

Seen Method Sup bathtub bed bin bkshlf cabinet chair display sofa table Cat.→ Inst.→

✁
NOC-R ✁ 38.8 22.3 33.0 18.7 40.4 46.5 32.1 46.8 24.6 33.7 37.6
Ours ω 31.6 13.7 18.5 13.2 20.5 40.0 24.7 39.5 22.8 24.9 30.1

↓
NOC-R ✁ 18.5 0.0 7.7 10.0 28.3 12.9 12.4 31.9 8.4 14.5 13.4
DINOv2 - 22.7 10.2 14.9 5.8 18.7 34.9 12.6 34.8 15.9 18.9 24.3

Ours ω 28.6 14.2 21.7 12.9 23.5 38.3 20.9 37.6 22.2 24.5 29.3

Table 7. Comparison in single-view accuracy on unseen categories on ScanNet25k. Supervised, weakly supervised, and unsupervised
baselines are marked with ‘✁’, ‘ω’, and ‘-’ respectively. Our method maintains accuracy on unseen classes while the supervised baseline
NOC-R completely fails to adapt.

Figure 9. Qualitative results in NOC map prediction on unseen ScanNet25k categories. Our method reliably generates more accurate
NOC maps than DINOv2 and is robust against unseen categories, unlike NOC-R, which excels in standard settings but struggles in
unfamiliar categories.

respectively. For a comparison in SUN2CAD dataset shown
in Table 11, our adapted method surpasses FoundationPose
with ground-truth depth 9/20 categories and tied in 3 cate-
gories. Although we still outperform them in mean accura-
cies by {+5.3%,+1.2%}.

11. Additional Qualitative Results

11.1. Qualitative Results in NOC Map Prediction

Figure 11 and Figure 12 show the NOC prediction results
of our method and other NOC predictor baselines, NOC-
S and DINOv2, on ScanNet25k [11] and SUN2CAD, re-
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Cat.↗ Inst.↗

#7 #14 #7 #2 #13 #19 #18 #15 #66 #4 #132 #59 #18 #92 #8 #3 #47 #14 #9 #3 #20 #550

9D
DINOv2 0.0 28.6 14.3 50.0 7.7 10.5 0.0 13.3 3.0 0.0 5.4 0.0 44.4 7.6 0.0 33.3 6.4 7.1 0.0 0.0 11.6 7.3

Ours (ϖ=1) 14.3 14.3 0.0 50.0 7.7 26.3 5.6 6.7 12.1 0.0 9.8 11.9 50.0 19.6 0.0 0.0 8.5 42.9 11.1 0.0 14.5 14.3
Ours 42.9 21.4 14.3 50.0 7.7 21.1 16.7 6.7 24.2 25.0 6.1 10.2 50.0 25.0 25.0 33.3 8.5 57.1 11.1 33.3 24.5 17.6

Table 8. Comparison in single-view accuracy on the zero-shot capability of feature choices on SUN2CAD dataset. Our fused
geometry-aware features achieve the highest accuracy. Even without fusion, pure geometry-aware features (Ours (ε=1)) outperform
DINOv2, demonstrating inherited generalization to unseen categories.

Method Texture bathtub bed bin bkshlf cabinet chair display sofa table Cat.→ Inst.→

DINOv2 ↭ 30.77 7.43 14.65 5.97 18.63 33.71 13.64 35.12 14.77 19.14 24.13
↓ 28.71 6.61 14.58 4.26 17.63 30.56 11.30 35.44 14.40 18.16 22.45

Ours ↭ 35.89 10.74 19.89 14,48 21.46 38.53 23.02 39.87 21.90 25.09 29.81
↓ 34.35 8.26 26.17 13.24 22.62 38.49 23.02 36.07 22.04 24.92 29.76

Table 9. Comparison in single-view accuracy on removing CAD model texture on ScanNet25k. Our method retains similar accuracies
when removing a query CAD model’s textures, compared to DINOv2, which shows more significant accuracy drops.

Figure 10. Rotation accuracy under varying CAD model inexact-
ness, measured by Chamfer distance and averaged over 100 Scan-
Net25k images.

spectively. Our method produces smoother, more accurate
NOC maps, whereas DINOv2 exhibits noise due to object
symmetry (e.g., left vs. right). While NOC-S produces a
shifted NOC distribution in some samples, our method did
not suffer from this problem due to direct correspondence
matching between a given 3D model and an input image.

11.2. Qualitative Results in Fine Pose Optimization
Figure 13 illustrates a comparison between poses from our
coarse alignment prediction and refined ones from our fine
alignment pipeline in ScanNet25k images. The results sug-
gest an improvement in both rotation and object placement
to match the appearance of the object in the input images.

11.3. Qualitative Results in ScanNet25k Images
We present comparison results on ScanNet25K for entire-
scene CAD alignment, evaluating against all our baselines:
9-DoF supervised, 9-DoF weakly supervised, and 6-DoF
weakly supervised methods, with randomly selected results
shown in Figure 17, Figure 18, and Figure 19. Please note

that the 3D model in ground-truth alignments might be dif-
ferent from each method’s retrieved 3D models.

11.4. Qualitative Results in SUN2CAD
Figure 20, Figure 21, and Figure 22 present comparisons in
CAD alignment results on random test samples from the
SUN2CAD dataset between our method, SPARC [26](9-
DoF), DINOv2 (9-DoF) and FoundationPose [49] (6-DoF).

12. Additional Ablation Studies

12.1. Study on the Architecture of Feature Adapter
We study the best network architecture for our feature
adapter. We choose 3 choices: Autoencoder (AE), ViT [13]
layers, and MLP layers. AE represents CNNs capable of
decoding feature maps into pixel-level outputs, aligning
with our NOC prediction objective. We follow AE archi-
tecture from Stable Diffusion [42]’s VAE decoder. ViT
layers specialize in capturing spatial relationships through
self-attention, making them well-suited for mapping feature
maps to 3D structures in NOC prediction. MLP serves as a
simple yet effective linear layer for adapting zero-shot DI-
NOv2 [36] features to a new feature space.

Table 14 reports NOC prediction errors (NOC error)
on the ScanNet25k validation set, measured as the RMSE
between predicted and ground-truth NOC maps, averaged
over object pixels within the segmented mask. Following
Section 3.1.1, we construct a feature voxel grid to establish
2D-3D correspondences for NOC prediction. Among the
tested architectures, MLP achieves the lowest NOC error,
making it the best choice.



Group Method bathtub bed bin bkshlf cabinet chair display sofa table Avg Cat.↗ Avg Inst.↗

9D
FoundationPose [49] (for 9D) 20.0 22.9 27.6 0.9 3.1 41.8 23.6 15.0 17.5 19.2 25.7

[49] (for 9D) + GT depth 23.3 25.7 34.5 1.9 3.1 45.4 20.4 20.4 20.3 21.7 28.4
Ours 16.7 18.6 22.8 12.7 9.2 49.3 24.1 38.1 16.5 23.1 30.1

6D
FoundationPose [49] 22.5 21.4 37.5 6.1 5.8 44.5 30.4 29.2 27.1 24.9 31.1

[49] + GT depth 25.8 27.1 47.0 9.0 7.3 46.7 32.5 38.1 33.1 29.6 35.0
Ours (for 6D) 20.8 25.7 27.6 19.8 22.7 56.1 51.8 45.1 20.1 32.2 38.0

Table 10. Comparison in NMS accuracy [33] on ScanNet25k [2] against FoundationPose [49]. We additionally provide GT depth
maps to FoundationPose to match their original setting. Our method still surpasses [49] + GT depth in average alignment accuracies.
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Cat.↗ Inst.↗

#7 #14 #7 #2 #13 #19 #18 #15 #66 #4 #132 #59 #18 #92 #8 #3 #47 #14 #9 #3 #20 #550

6D
FoundationPose [49] 28.6 50.0 14.3 50.0 7.7 5.3 11.1 33.3 33.3 25.0 23.5 15.3 11.1 7.6 25.0 0.0 29.8 21.4 0.0 33.3 21.3 20.4

[49] + GT depth 28.6 50.0 14.3 100.0 7.7 10.5 11.1 53.3 31.8 75.0 47.7 27.1 16.7 9.8 0.0 0.0 31.9 0.0 55.6 33.3 30.2 29.5
Ours (for 6D) 42.9 50.0 14.3 50.0 23.1 36.8 16.7 20.0 39.4 50.0 30.3 20.3 61.1 27.2 25.0 0.0 13.8 78.6 44.4 66.6 35.5 30.7

Table 11. Comparison in Single-view accuracy [16] on SUN2CAD against FoundationPose [49]. We additionally provide GT depth
maps to FoundationPose to better match their original setting. Our method still surpasses [49] + GT depth in average alignment accuracies.

12.2. Study on Training Data for Feature Adapter
Table 12 presents an ablation study on the training data used
for our geometry-aware adapter. We evaluate NOC pre-
dictions by using the same feature voxel grid construction
and 2D feature map with nearest-neighbor matching, while
varying the adapter model used to generate the features. The
results indicate that using both rendered and generated im-
ages leads to higher NOC errors than using solely rendered
images due to incorrect synthetic samples, as shown in Fig-
ure 8.

To address this issue, we propose filtering out invalid
generated images using NOC prediction. Specifically, we
estimate the NOC map for each generated image by ap-
plying our nearest-neighbor matching with a feature voxel
grid from rendered templates, as described in Section 3.1.
Here, a generated image will serve as the input feature map
instead of a real image. The predicted NOC map is then
compared to the ground-truth NOC map to calculate NOC
error and assess whether the generated image produces fea-
tures sufficiently similar to the original rendered templates.
We discard generated images with an NOC error exceed-
ing 0.20. Training our feature adapter on filtered and ren-
dered images results in improved performance and the low-
est NOC error.

12.3. Study on the Architecture of NOC-S
We conduct an ablation study on our introduced baseline,
NOC-S, to optimize its performance for a fair comparison
with our method on the ScanNet25k validation set. We
tested learning NOC reconstruction objective (Eq. 1) on the
same choice of architectures, ViT [13] layer, MLP, and Au-
toencoder (AE) [42]. Unlike the feature adapter’s NOC pre-

Training data NOC error ± SE ↑

Rendered 0.2313 ± 0.0022
Generated 0.2412 ± 0.0022
Rend+Gen 0.2330 ± 0.0023

Filtered Rend+Gen 0.2263 ± 0.0023

Table 12. Ablation study in training data of our feature
adapter.

Features # Rendered # Augmented # Total NOC error ± SE ↘

DINOv2

36 - 36 0.2679 ± 0.0018
- 36 36 0.2822 ± 0.0018

144 - 144 0.2613 ± 0.0019
- 144 144 0.2775 ± 0.0018

36 108 144 0.2474 ± 0.0020
36 252 288 0.2466 ± 0.0020

Ours

36 - 36 0.2364 ± 0.0022
- 36 36 0.2396 ± 0.0022

144 - 144 0.2335 ± 0.0022
- 144 144 0.2372 ± 0.0022

36 108 144 0.2278 ± 0.0023
36 252 288 0.2263 ± 0.0023

Table 13. Ablation study on feature voxel grid construction.

diction, which relies on nearest-neighbor matching, NOC-S
directly outputs 2D-3D correspondences from a final MLP
layer. We hypertuned each choice for optimal performance.
The results in Table 15 show that ViT achieves the lowest
NOC error.

Our final model consists of a single ViT layer with a one-
layer MLP, mapping encoded DINOv2 [36] feature maps
to NOC. In addition to feature maps, we also concate-
nate a query CAD model’s global feature, which is gener-



Figure 11. Qualitative results in NOC prediction on Scan-
Net25k dataset. Our solution provides better smoothness and cor-
rectness than DINOv2, while NOC-S learns to output a smooth
NOC map, multiple samples show shifted or invalid NOC range
compared to ground-truth NOC maps.

ated by averaging CLS tokens from all CAD model’s ren-
dering templates using DINOv2. This results in a CAD-
conditioned feature map with size RH↔W↔2048. The ViT
layer has a hidden size of 2048 with 8 attention heads, while
the MLP predicts 3-channel NOC outputs. We train the

Figure 12. Qualitative results in NOC prediction on SUN2CAD
dataset. Our solution provides better smoothness and correctness
than DINOv2 in the same zero-shot setting.

model using AdamW [31] optimizer using a constant learn-
ing rate 5e→4 and training batch size of 150.

12.4. Study on Feature Voxel Grid and Templates
Table 13 presents the impact of different template types on
feature voxel grid construction on ScanNet25k validation



Coarse AlignmentInput Ours (Coarse+Fine)

Figure 13. Qualitative results of dense image-based alignment
optimization, shown before (coarse alignment) and after fine pose
optimization.

Architecture NOC error ± SE ↑

AE 0.2485 ± 0.0024
MLP 0.2263 ± 0.0023
ViT 0.2454 ± 0.0020

Table 14. Ablation study in architecture choices of our feature
adapter. MLP provides the best NOCS prediction error over other
choices.

Architecture NOC error ± SE ↑

AE 0.2094 ± 0.0015
MLP 0.2040 ± 0.0014
ViT 0.1966 ± 0.0017

Table 15. Ablation study in architecture choices of NOC-S. ViT
provides the best NOCS prediction error.

set. Using only augmented templates (generated images) re-
sults in higher NOC errors than rendered images in the NOC
output from feature matching. However, combining both
rendered and generated images yields better performance.
The improvements are more significant when using DINO

features (↓0.0309) than our GFS features (↓0.0109). Nev-
ertheless, our GFS features result in lower NOC errors than
using DINOv2 features alone.

12.5. Study on Triplet Loss Hyperparameters
In addition to the feature adapter loss study of ϑ in Sec-
tion 4, we present a hyperparameter study on ω

+
dist, ω

→
dist, and

ω
→
feat using ScanNet25k validation set on NOC error metric.

The results are shown in Figure 14. Higher values of ω+dist re-
sult in larger NOC errors due to selecting features from dif-
ferent object parts as positive pairs. Similarly, excessively
high values of ω→dist and ω

→
feat reduce negative sample diver-

sity, increasing NOC error. Likewise, very low ω
+
dist values

reduce positive pair variation, also leading to higher NOC
error.

12.6. Study on Dense Image-based Alignment Hy-
perparameters

We study the single-view alignment accuracies of our dense
image-based alignment hyperparameters ϱNOC-A,ϱm, and
ϱd on ScanNet25k validation set. To normalize each loss
term, we first compute the mean alignment loss using ini-
tial poses from our coarse pose estimator. The mean val-
ues are NNOC-A = 0.33, Nm = 1, and Nd = 0.067.
Each term is then normalized relative to the smallest mean
loss, yielding the scaled hyperparameters: ϱNOC-A =
NNOC-Aϱ

↗
NOC-A,ϱm = Nmϱ

↗
m, and ϱd = Ndϱ

↗
d.

For hyperparameter tuning, we fixed ϱ
↗
NOC-A = 1 and

perform a grid search for ϱ↗
m and ϱ

↗
d. As shown in Figure 15,

the highest alignment accuracy is achieved with ϱ
↗
m = 3 and

ϱ
↗
d = 4, resulting in final values of ϱNOC-A = 0.33, ϱm = 3,

and ϱd = 0.27.

13. Failure Cases
Figure 16 illustrates failure cases. Poor input image quality,
such as small objects (A), degrades DINOv2 features, mak-
ing it difficult to distinguish object parts correctly, which
can lead to incorrect pose estimation.

Failures in dependencies, such as depth prediction or
mask segmentation, also affect our method. For example, in
(B), the mask prediction merges two bicycles into one. As
a result, while our method produces a good NOC map for
the target bicycle in the back (C), it also unintentionally in-
cludes parts of the front bicycle (D), causing misalignment
by aligning with the front bicycle instead.

Objects with minimal edge cues, such as a toaster oven
with severe self-occlusion, present another challenge. The
NOC map (E) lacks sufficient edge information to infer
depth, leading to an incorrect shape prediction.

Alignment ambiguity arises when multiple matched
parts have inconsistent spatial relationships between the
CAD model and the real object. Our method aims to cover
all local correspondences, whereas humans may prioritize



Figure 14. Ablation study in Triplet loss hyperparameters ϑ+
dist, ϑ

→
dist, and ϑ→

feat on NOC error metric.

Figure 15. Ablation study in Dense Image-based Alignment
Hyperparameters on Single-view alignment accuracy [16].

specific object parts. In (F), the CAD model of a coffee
maker has a kettle on the left, whereas the real object has
it in the middle. Our method prioritizes aligning the ket-
tle position rather than focusing on the overall coffee maker
shape, deviating from the ground-truth. Similarly, in (G),
when aligning a CAD model with significant visual differ-
ences from its target object, our method tries to match indi-
vidual parts, such as the doll’s hand, while a human might
prioritize aligning the doll’s head.

Lastly, although (H) clearly distinguishes between top

MaskInput GT NOC Map Ours

A

D

C

D

E

F

G

B

H

Figure 16. Failure cases; (A) Poor input image quality; (B) incor-
rect input mask, causing two objects’ features to blend together (C,
D) for CAD alignment; (E) lack of edge cues for inferring object
depth; (F, G) alignment ambiguity; (H) Thin object.

and bottom, the thin structure complicates distinguishing in-
side from outside on the same side, making it more prone to
failure compared to other objects.

14. Societal Impacts
Our work on 9-DoF pose estimation benefits real-world ap-
plications in synthetic environments such as VR and gam-
ing, where safety is not a concern. However, its accuracy
may be insufficient for safety-critical tasks like autonomous
driving. Reliance on predicted depth alone can introduce
translation-scale ambiguity, and further accuracy improve-
ments are needed to mitigate potential risks in high-stakes
environments.
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Figure 17. Random test samples from ScanNet25k. We compare entire-scene CAD alignment against 9-DoF supervised methods
(SPARC [26] and ROCA [18]), 9-DoF weakly supervised methods (DiffCAD [16]), and 6-DoF weakly supervised baselines (Foundation-
Pose [49])
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Figure 18. Random test samples from ScanNet25k. We compare entire-scene CAD alignment against 9-DoF supervised methods
(SPARC [26] and ROCA [18]), 9-DoF weakly supervised methods (DiffCAD [16]), and 6-DoF weakly supervised baselines (Foundation-
Pose [49])
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Figure 19. Random test samples from ScanNet25k. We compare entire-scene CAD alignment against 9-DoF supervised methods
(SPARC [26] and ROCA [18]), 9-DoF weakly supervised methods (DiffCAD [16]), and 6-DoF weakly supervised baselines (Foundation-
Pose [49]).
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Figure 20. Random test samples from SUN2CAD comparing 9-DoF pose predictions with SPARC [26] and DINOv2, and 6-DoF
predictions with FoundationPose [49].
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Figure 21. Random test samples from SUN2CAD comparing 9-DoF pose predictions with SPARC [26] and DINOv2, and 6-DoF
predictions with FoundationPose [49].
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Figure 22. Random test samples from SUN2CAD comparing 9-DoF pose predictions with SPARC [26] and DINOv2, and 6-DoF
predictions with FoundationPose [49].
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