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Supplementary Material

Sec. A provides additional theoretical insights.

Sec. B provides additional details on training datasets.

Sec. C provides additional details on hyperparamers.

Sec. C provides further architectural details.

Sec. D provides details about multiple backbones.

Sec. E provides additional details on augmentations.

Sec. F provides extensive ablation and visualizations.

A. Detailed Theoretical Analysis

Proof of Preposition. We denote the spaces of the output
functions F(A1,...,Ai−1) induced by the weight matrices
Ai, i = 1, . . . , 5 by Hi, i = 1, . . . , 5, respectively. Lemma
A.7 in [2] suggests the following inequality:
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Thus, we obtain the following inequality:
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Meanwhile, we have the following inequality:
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Therefore, we get:
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Motivated by the proof in [2], we assume the following

equations:
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which is precisely Equation (13). The proof is completed.

B. Additional Details on Training datasets
Our experiments are conducted on five SF-DAOD bench-
mark datasets. Along with this, we introduce the SF-DAOD
problem in the medical domain and conduct experiments on
four Breast Cancer Detection (BCD) datasets, including two
publicly available datasets.

B.1. Natural Datasets
1) Cityscapes [15] is gathered from urban environments
across 50 European cities, provides detailed annotations for
30 semantic classes across 8 categories. It comprises 5,000
high-quality annotated images and a larger set of 20,000
coarsely annotated images, all high-resolution (2048x1024
pixels) providing detailed visual data for precise scene un-
derstanding. Our study utilizes the high-quality subset of
5,000 images, consisting of 2,975 training images and a stan-
dard test set of 500 images from Frankfurt, Munster, and
Lindau, as employed in prior research. This dataset is release
under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License, and is available for
academic and research purposes.

2) Foggy Cityscapes [82] is an extension of the
Cityscapes dataset, designed to support research in devel-
oping robust computer vision algorithms for autonomous



Table 6. Details of Training Datasets

Dataset Type Pre-training (Source) Unsupervised Adaptation (Target)

Train Val/Test Train Test

Cityscapes Natural 2,975 500 2,975 500
Foggy Cityscapes Natural - - 2,975 500

KITTI Natural 7,481 - -
SIM10k Natural 8,500 1,500 - -

BDD100k Natural - - 36,728 5,258

RSNA-BSD1K Medical 1000 (200) 250 (50) 1000 (200) 1000(200)
INBreast Medical - - 410 (91) 410 (91)
DDSM Medical 2885 (1339) 218 (118) 3103 (1458) 3103 (1458)

driving in foggy conditions. Similarly, it consists of high-
resolution images (2048x1024 pixels) with annotations ofr
2D bounding boxes, pixel-level semantic segmentation, and
instance segmentation, inherited from the original dataset. It
is directly constructed from Cityscapes by simulating three
levels of foggy weather (0.005,0.001,0.02), but we adapt on
the most extreme level (0.02) in our experiments as done by
[82]. This dataset is released under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International
License.

3) KITTI [27] is a promenient benchmark for computer
vision and robotics, particularly in autonomous driving. Data
was collected using a car-mounted sensor suite, including
high-resolution color and grayscale cameras, a Velodyne
laser scanner, and a GPS/IMU system, in urban, rural, and
highway settings around Karlsruhe, Germany. The dataset
includes stereo image pairs with disparity maps, consecu-
tive frames for optical flow, image sequences with ground
truth poses for SLAM, and images with corresponding 3D
point clouds for object detection. The images are typically
high-resolution (1242x375 pixels), captured at 10-100 Hz,
providing detailed and diverse visual data. The 3D object
detection subset is split into 7,481 training images and 7,518
test images. As quite common in the Domain Adaptation
literature, we only use the 7,481 training images in our ex-
periments for adaptation and evaluate on the same split as
done in . The dataset is publicly available for academic use
under the Creative Commons Attribution-NonCommercial-
ShareAlike license.

4) SIM10k [46] is a synthetic dataset create using the
Grand Theft Auto V (GTA V) engine, it simulates various
driving scenarios providing diverse set of high-resolution
images with detailed annotations. This dataset consists
of 10,0000 images of urban environments under different
weather conditions, lighting and traffic situations. In our ex-

periments for source training, we prepare our own train and
val set of 8,500 and 1,500 images respectively. We intend
to make this split public for reproducibility. This dataset is
also publicly available for academic and research purposes,
with usage terms typically provided by the dataset creators,
allowing for non-commercial use.

5) BDD100k [105] developed by the Berkeley DeepDrive
(BDD) team, is one of the largest and most diverse driving
video datasets available. It comprises of 100,000 driving
videos and 100K keyframe images, and captures a wide
range of driving scenarios across urban, suburban and rural
environments in the United States, under diverse weather
conditions, lighting, and times of day. Each image is of
720p and is richly annotated with 2D bounding boxes for
objects, lane markings, drivable areas and scene attributes
like weather and time of day. We make use of the standard
BDD100K train set containing 36,728 images for adaptation
and use 5,258 images for evaluation. These images are
the frames at the 10th second in the videos and the split is
consistent with the original video set. This dataset is released
under the Creative Commons Attribution-Non Commercial-
ShareAlike 4.0 Internation license and is publicly available
for academic and research purposes.

B.2. Medical Datasets

INBreast [69] is a relatively small breast cancer detection
dataset, consisting of 410 mammography images from 115
patients, including 87 confirmed malignancies. The training
images include both histologically confirmed cancers and
benign lesions initially recalled for further examination but
later identified as nonmalignant. We hypothesize that incor-
porating both malignant and benign lesions in the training
process will enhance our model’s ability to detect a broader
range of lesions and effectively distinguish between malig-
nant and benign cases.



DDSM [51] is a publicly available breast cancer detec-
tion dataset, comprising 2,620 full mammography images,
with 1,162 containing malignancies. The DDSM dataset
offers digitized film-screen mammography exams with le-
sion annotations at the pixel level, where cancerous lesions
are histologically confirmed. We used the DDSM dataset
exclusively for training our model and not for evaluation.
This decision stems from the observation that the quality of
digitized film-screen mammograms is inferior to that of full-
field digital mammograms, making evaluation on these cases
less relevant. For our purposes, we converted the lossless
JPEG images to PNG format, mapped pixel values to optical
density using calibration functions from the DDSM website,
and rescaled the pixel values to a range of 0–255.

RSNA-BSD1K [7] is a comprehensive collection of
54,706 screening mammograms sourced from approximately
8,000 patients. This dataset includes a diverse range of cases,
among which 1,000 instances have been identified as ma-
lignant. The dataset serves as a valuable resource for devel-
oping and evaluating machine learning models in the field
of medical imaging, particularly in breast cancer detection.
From this large dataset, a specialized subset is curated known
as RSNA-BSD1K, which consists of 1,000 carefully selected
mammograms. This subset was designed to maintain a bal-
ance between normal and malignant cases while ensuring
high-quality annotations suitable for robust model training
and evaluation. Within RSNA-BSD1K, 200 cases have been
confirmed as malignant, representing a diverse spectrum of
tumor characteristics and imaging conditions.

Note that unlike in natural images, single domain detec-
tion techniques which use a particular subset of the dataset
for adaptation and remaining for testing, our technique does
not require any labels from the target dataset. Hence, for
medical datasets, it seems logical to use the whole dataset
during training and testing, and not just the any train or
test split. Hence, when reporting results for “Dataset A to
Dataset B”, we imply that the model is trained on Ds = A
(whole dataset for the training), and adapted for Dt = B
(whole dataset for adaptation in an unsupervised way and
testing). Table X shows the detailed split wise sets used
during experiments.

C. Further Insights into Hyperparameter Selec-
tion

The selection of hyperparameters, as detailed in Table 7, was
guided by empirical experimentation and domain-specific
considerations. Key factors included optimizing model gen-
eralization, ensuring stability during training, and balanc-
ing performance across different benchmarks. Parameters
such as the number of pseudo labels, learning rate, and loss
weights were fine-tuned based on validation results, with
adjustments made dynamically for specific dataset shifts.
Additionally, threshold values for pseudo-labeling were set

adaptively to enhance robustness across diverse datasets.

Table 7. Below are the detailed hyper-parameters corresponding to
each benchmark, with the source dataset as the In-house dataset

Hyper-parameter Description Value

num_classes Number of classes 1
lr Learning rate 0.0001

lr_backbone Learning rate for backbone 1e-05
batch_size Batch size 4

weight_decay Weight decay 0.0001
epochs Number of epochs 100
lr_drop Learning rate drop 11

clip_max_norm Clip max norm 0.1
multi_step_lr Multi-step learning rate True
modelname Model name ’dino’
backbone Backbone ’focalnet_L_384_22k_fl4’

focal_levels Focal levels 4
focal_windows Focal windows 3

position_embedding Position embedding ’sine’
pe_temperature PE temperature 20

enc_layers Encoder layers 6
dec_layers Decoder layers 6

dim_feedforward Dimension of feedforward network 2048
hidden_dim Hidden dimension 256

dropout Dropout 0.0
nheads Number of heads 8

num_queries Number of queries 900
box_attn_type Box attention type ’roi_align’

num_feature_levels Number of feature levels 4
enc_n_points Encoder points 4
dec_n_points Decoder points 4

transformer_activation Transformer activation ’relu’
batch_norm_type Batch norm type ’FrozenBatchNorm2d’

set_cost_class Set cost class 2.0
set_cost_bbox Set cost bbox 5.0
set_cost_giou Set cost GIoU 2.0
cls_loss_coef Class loss coefficient 1.0

mask_loss_coef Mask loss coefficient 1.0
dice_loss_coef Dice loss coefficient 1.0
bbox_loss_coef BBox loss coefficient 5.0
giou_loss_coef GIoU loss coefficient 2.0
enc_loss_coef Encoder loss coefficient 1.0
focal_alpha Focal alpha 0.25

matcher_type Matcher type ’HungarianMatcher’
nms_iou_threshold NMS IoU threshold 0.1

use_dn Use DN True
dn_number DN number 100

dn_box_noise_scale DN box noise scale 1.0
dn_label_noise_ratio DN label noise ratio 0.5

dn_labelbook_size DN labelbook size 3
use_ema Use EMA False

ema_decay EMA decay 0.9997
optim_iter_per_epoch Optimization iterations per epoch 2500

D. More details on different Backbones
RN50_4scale and RN50_5scale. ResNet-50 is a 50-layer
deep convolutional neural network designed for image recog-
nition tasks. It employs residual learning to allow the net-
work to learn residual functions with reference to the layer
inputs, which helps in training deeper networks. The model
is pretrained on the ImageNet-1k dataset, which contains 1.2
million images and 1,000 classes. This pretraining helps the
network to learn robust feature representations that can be
fine-tuned for various downstream tasks. Since some meth-
ods adopt 5 scales of feature maps and some adopt 4, we
report our results with both 4 and 5 scales of feature maps.



Table 8. Detailed hyper-parameters corresponding to each benchmark, with the source dataset as the In-house dataset.

Hyper-parameter Description City2Foggy City2BDD Sim2City Kitti2City InH2InB InH2DDSM

num_classes Number of classes 8 2 2 2 2 2
epochs Number of epochs 10 10 10 10 20 20

topk_pseudo Number of pseudo labels 30 30 30 30 15 15
use_dynamic_th Use dynamic threshold True True True True False False

pseudo_th Initial pseudo label threshold 0.006 0.04 0.04 0.04 0.06 0.06
lambda Weight of Enc and Dec loss 0.6 0.6 0.6 0.6 1.0 1.0

Table 9. Data Augmentation Methods and Parameters

Augmentation Type Method Parameters

Weak
Random Horizontal Flip Probability = 0.5

Resize Size = 800, Max Size = 1333

Strong

Color Jitter (Color Adjustment)

Brightness = 0.4

Contrast = 0.4

Saturation = 0.4

Hue = 0.1

Random Grayscale Probability = 0.2

Gaussian Blur Sigma Range = [0.1, 2.0

Probability = 0.5

Normalization Mean = [0.485, 0.456, 0.406]

Std = [0.229, 0.224, 0.225]

Convnext This is a modern convolutional network archi-
tecture that aims to bridge the gap between convolutional
networks and vision transformers. ConvNeXt incorporates
design principles from transformers, such as a simplified
architecture with fewer layers and parameters, but retains
the efficiency and scalability of convolutional networks. It
leverages state-of-the-art techniques like LayerScale, deep
supervision, and various normalization methods to achieve
competitive performance on benchmarks. ConvNeXt models
are often pretrained on large datasets like ImageNet-1k or
ImageNet-22k to provide strong initial weights for transfer
learning.

Swin The Swin Transformer, particularly the large ver-
sion (SwinL), is a hierarchical vision transformer designed
for image classification, object detection, and segmentation
tasks. It introduces the concept of shifted windows for com-
puting self-attention, which allows it to handle varying scales
of features more efficiently than traditional transformers.
SwinL is pretrained on the ImageNet-22k dataset, which
contains 14 million images and 22,000 classes. This exten-
sive pretraining helps the model to capture rich and diverse
feature representations, making it highly effective for a wide
range of visual tasks. FN-Fl3 and FN-Fl4 At the core of
Focal Modulation Networks (FocalNets) is the focal modula-
tion mechanism: A lightweight element-wise multiplication
as the focusing operator to allow the model to see or interact
with the input using the proposed modulator; As depicted
below, the modulator is computed with a focal aggregation

procedure in two steps: focal contextualization to extract
contexts from local to global ranges at different levels of
granularity and gated aggregation to condense all context
features at different granularity levels into the modulator.
We adopt the same stage configurations and hidden dimen-
sions as those used in Focal Transformers, but we replace the
Self-Attention (SA) modules with Focal Modulation mod-
ules. This allows us to construct various Focal Modulation
Network (FocalNet) variants. In FocalNets, we only need
to define the number of focal levels (L) and the kernel size
(k) at each level. For simplicity, we increase the kernel size
by 2 for each subsequent focal level, i.e., kl = kl−1 + 2. To
match the complexities of Focal Transformers, we design
both small receptive field (SRF) and large receptive field
(LRF) versions for each of the four layouts by using 3 and
4 focal levels, respectively. We use non-overlapping convo-
lution layers for patch embedding at the beginning (with a
kernel size of 4 × 4 and stride of 4) and between stages (with
a kernel size of 2 × 2 and stride of 2).

The results of utilizing each backbone in our model and
the corresponding results are present in Table X.

E. More Details on Augmentations
In our study, we employed both weak and strong augmenta-
tion techniques to enhance the robustness and generalization
capabilities of our model. These augmentations are applied
to the training images to simulate various real-world scenar-
ios and improve the model’s performance.

Weak Augmentation
Weak augmentations are relatively simple transformations
that slightly alter the images without significantly changing
their content. We utilized two primary weak augmentation
techniques. The first is Random Horizontal Flip, which flips
the image horizontally with a probability of 0.5. This helps
the model learn invariance to the left-right orientation of
objects, making it more robust to such variations. The sec-
ond technique is Resize, where images are resized such that
the shortest edge is 800 pixels while maintaining the aspect
ratio, and if the longest edge exceeds 1333 pixels, the image
is scaled down accordingly. This resizing standardizes the
input image size, ensuring consistent and efficient training.
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Figure 5. Qualitative results for car detection on Cityscapes in S2C setting. MRT is an Unsupervised domain adaptation technique with the
best results in S2C. Our method, being an SF-DAOD technique, comes surprisingly close to the best performing UDA method.

Together, these weak augmentations provide a baseline level
of variability in the training data, helping the model to gen-
eralize better across different image scales and orientations.

Strong Augmentation
Strong augmentations involve more complex transforma-
tions that significantly alter the images, thereby providing
a broader range of variability. These augmentations are de-
signed to challenge the model and improve its ability to

handle diverse and complex real-world scenarios. The first
strong augmentation is Color Jitter, which randomly changes
the brightness, contrast, saturation, and hue of the images
with specified parameters (brightness = 0.4, contrast = 0.4,
saturation = 0.4, hue = 0.1) and a probability of 0.8. This
helps the model become invariant to different lighting con-
ditions and color variations. The second augmentation is
Random Grayscale, which converts the image to grayscale



with a probability of 0.2, encouraging the model to focus on
shapes and structures rather than colors. The third strong
augmentation is Gaussian Blur, applied with a sigma range
of [0.1, 2.0] and a probability of 0.5, simulating out-of-focus
conditions and reducing high-frequency noise. Finally, all
images are converted to tensors and normalized using the
mean [0.485, 0.456, 0.406] and standard deviation [0.229,
0.224, 0.225]. These strong augmentations introduce sub-
stantial variability in the training data, forcing the model to
learn more robust and generalized features.

F. Qualitative Analysis
We provide a qualitative visualization analysis of pseudo-
labels and feature distributions. Our method outperforms
the state-of-the-art methods, including MRT [113] and GT.
Figure 7 and Fig. 6 present predictions on the breast can-
cer dataset and foggy dataset respectively, highlighting the
superior performance of our approach.
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Figure 6. Qualitative results for car detection on Foggy Cityscapes in C2F setting. The visible detections are from the classes: Person, Car,
Train, Bicycle, Bus, Truck, motorcycle, Rider. MRT is an Unsupervised domain adaptation technique with the best results in C2F. Our
method, being an SF-DAOD technique, comes surprisingly close to the best performing UDA method.
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Figure 7. Quantitative results for Breast Cancer detection in In2IB setting. Predictions are depicted in green.
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