
PROGRESSOR: A Perceptually Guided Reward Estimator
with Self-Supervised Online Refinement

Supplementary Material

7. PROGRESSOR Training Details

7.1. Architecture and Training

PROGRESSOR can, in principle, be trained with any visual
encoding architecture, requiring only minor modifications
to the final layer to predict Gaussian parameters. In our ex-
periments, we utilize the standard ResNet34 model [16], re-
placing its final fully-connected layer with an MLP of size
[512, 512, 128]. Given that our method processes triplets
of inputs (oi,oj ,og), the resulting representation has a size
of [128 × 3]. This representation is then fed into an MLP
with layers of size [128 × 3, 2048, 256]. Finally, two pre-
diction heads are derived from the 256-dimensional output,
predicting µ and log σ2.

We pretrain PROGRESSOR for 30000 steps using the
EPIC-KITCHENS dataset [6] for the real-world experi-
ments, and for 10000 steps for experiments performed in
simulation. In the pretrianing steps for both our simulated
and real-world experiments, we first sample a trajectory
(i.e., a video clip) from the pretraining dataset. We then
randomly select an initial frame oi as well as a goal frame
og from the selected trajectory such that ∥g−i∥ ≤ 2000. Fi-
nally, we uniformly randomly select an intermediate frame
oj , where i < j < g.

7.2. Hyperparameters

Simulation Real-World RWR

α 0.4 0.4
β 0.9 −

Table 2. Hyperparameters used by PROGRESSOR for experiments
performed in simulation and the real world.

Table 2 lists the hyperparameters used for both the sim-
ulation online RL and real-world offline RL experiments.
A consistent α = 0.4 is used across all experiments. The
push-back decay factor is employed exclusively in the sim-
ulated online RL experiments.

8. Simulation Experiment Details

In this section, we describe the tasks and the data generation
process employed using the MetaWorld environment [44]
for our simulation experiments.

8.1. Meta-World Tasks
We took six diverse tasks from the Meta-World environ-
ment [44], described in Table 3. In all tasks, the position
of the target object, such as the drawer or hammer, is ran-
domized between episodes.

Task Task Description

door-open Open a door with a revolving joint.
drawer-open Open a drawer.
hammer Hammer a screw on the wall.
peg-insert-side Insert a peg sideways.
pick-place Pick and place a puck to a goal.
reach Reach a goal position.

Table 3. Meta-World [44] task descriptions.

8.2. Expert Data Generation
To collect expert trajectories for our simulated experiments,
we execute Meta-World’s oracle policies. For each task,
we generated 100 successful rollouts for training and 10 for
testing. This dataset is subsequently used for pretraining
PROGRESSOR in our simulated experiments, following the
steps outlined in Section 7.1.

9. Real-World Robot Experiment Details
9.1. Robotic Experiment Setup
The real-robot experiments are performed using a Universal
Robots UR5 robot arm equipped with a Robotiq 3-Finger
Gripper (Figure 8). The setup includes two RealSense cam-
eras: one mounted on the robot’s wrist that images the grip-
per, and the second on a fixed tripod facing the robot.

9.2. Robotic Demonstration Data Collection
We collect demonstrations by teleoperating the UR5 using
a Meta Quest 3 controller [39]. We record each demon-
stration at 30 Hz for 400 steps. Figure 9 shows video frame
sequences from correct and incorrect demonstrations for the
four real-world tasks.

9.3. Task Descriptions
The tasks involve a variety of object manipulation chal-
lenges designed to test reward weighting in offline Rein-
forcement Learning. In the Drawer-Close task, the ob-
jective is to close a drawer starting from an open position.
The Drawer-Open task requires the agent to pull a drawer
open from a closed state. In the Push-Block task, the



Figure 8. The real-world experiments were conducted using a Uni-
versal Robots UR5 robot arm equipped with a Robotiq 3-Finger
Gripper. One RealSense camera is mounted to the end-effector
and the other RealSense camere is fixed in the environment using
a tripod (visible in the left of the image).

goal is to push a block toward a specified target, a cup, en-
suring the block moves into proximity with the cup. Finally,
Pick-Place-Cup involves picking up a cup and care-
fully placing it into a designated box. Figure 10 displays
the goal frames representing the completion of each task.

9.4. Training and Evaluation Details

Task Success Criterion

Drawer-Open Drawer is open by more than 5 cm.
Drawer-Close Drawer is within 1 cm of being fully closed.
Push-Block Block is within 5 cm of the cup.
Pick-Place-Cup Cup is placed inside the box.

Table 4. Success criterion for the real-robot experiments.

Our few-shot offline RL implementation builds upon the
Action-Chunking Transformer (ACT) [46]. The inputs to
the model include (i) two 640×480 RGB images from the
RealSense cameras, and (ii) proprioceptive data consisting
of the 6-DoF joint angles and the binary open or close state
of the gripper. The action space consists of the 6-DoF trans-
lational and rotational velocity of the end-effector and a bi-
nary open or close command of the gripper.

In the reward-weighted regression (RWR) setup, rewards
are computed by providing all reward models with the final
frame of a correct demonstration from each task as the goal
image. For all reward predictions, frames from the fixed
RealSense camera were used. Figure 10 illustrates the goal
images used for the four robotic tasks, which were consis-
tently used across all reward predictions. The temperature
scale in RWR was set to ω = 0.1 for all tasks.

Hyperparameter Value

prediction horizon 30
learning rate 10−5

batch size 64
epochs 5000
ω 0.1

Table 5. Hyperparameters for reward-weighted ACT training.

Table 5 shows the hyperparameters used to train the
{PROGRESSOR, VIP, R3M}-RWR-ACT models. For the
vanilla ACT, we used the same hyperparameters as listed in
Table 5, except for ω = 0.

During inference, the model predicts a sequence of ac-
tions (a “chunk”) of length 30 and then executes each action
before predicting the next chunk. We did not use a temporal
ensemble as proposed by Zhao et al. [46], since we found
that it causes the gripper to drift and negatively impacts per-
formance.

For evaluation, we conduct 20 test rollouts for each task
and report the success rate. The success criteria for each
task are outlined in Table 4.

10. Ablation
In this section, we present an ablation study evaluating dif-
ferent values of the push-back decay factor (β) while train-
ing a DrQ-v2 agent on Meta-World’s hammer task, using a
fixed seed of 121. The case of β = 0 (PROGRESSOR with-
out Push-back) is discussed in the main paper. Figure 11 de-
picts the environment rewards accumulated during training.
As shown in the figure, the agent achieves higher rewards
with β = 0.9.

11. Qualitative Analysis
Figure 12 presents zero-shot reward predictions from PRO-
GRESSOR pretrained on the EPIC-KITCHENS dataset. This
figure serves as an extension to Figure 7 for complete-
ness. It includes zero-shot reward predictions for sample
correct trajectories from our collected real-robot demonstra-
tions for the tasks Drawer-Open, Drawer-Close, and
Push-Block.

For completeness, we include plots comparing the mean
reward predictions of R3M and VIP—using their pub-
licly available pretrained weights—with the reward esti-
mated by PROGRESSOR. The plots in Figure 13 pro-
vide a qualitative comparison of reward predictions from
our robotic demonstration dataset for three additional
real-world tasks: Drawer-Close, Push-Block, and
Pick-Place-Cup. As illustrated in the figure, for all
tasks, our reward model consistently predicts lower average
rewards for the sub-trajectories in the incorrect demonstra-
tions, where the failures occur.



Time −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(a) Push-Block: (top) correct and (bottom) incorrect

Time −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(b) Drawer-Close: (top) correct and (bottom) incorrect

Time −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(c) Push-Block: (top) correct and (bottom) incorrect

Time −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(d) Pick-Place-Cup: (top) correct and (bottom) incorrect

Figure 9. Correct and incorrect demonstrations (every 80th frame) for each real-robot task from a third-person camera view used in
our experiments. To see how PROGRESSOR and the baselines differentiate between correct and incorrect trajectories, see Figure 6
(Drawer-Open) and Figure 13 (other three tasks).



(a) Drawer-Open (b) Drawer-Close

(c) Push-Block (d) Pick-Place-Cup

Figure 10. The goal images that we use for each task for reward
weighting in the offline reinforcement learning experiments.

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

���������������������������������������������� ���������������������������������������������������������������

���

���

���

���

���

�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�

������

������

������

������

������

������

������

������

Figure 11. Visualization of policy learning performance in Meta-
World’s hammer environment, evaluating the effect of different
values for the push-back decay factor β. The plot highlights the
accumulated rewards over training, demonstrating how varying β
values influences the agent’s ability to optimize performance.

(a) Reward plot for Drawer-Open task

(b) Reward plot for Drawer-Close task

(c) Reward plot for Push-Block task

Figure 12. Visualization of the predicted reward by PROGRES-
SOR, pretrained on EPIC-KITCHENS and evaluated zero-shot
on correct robotic demonstrations for (a) Drawer-Open (b)
Drawer-Close and (c) Push-Block tasks.



���������������������� ������������������������

� ��� ��� ��� ���

�����

����

����

����

����

����

����

����

����

�
��
��

�
��
��
�
�

(a) R3M

� ��� ��� ��� ���

�����

����

����

����

����

����

(b) VIP

� ��� ��� ��� ���

�����

���

���

���

���

(c) PROGRESSOR

� ��� ��� ��� ���

�����

����

����

����

����

����

�
��
��

�
��
��
�
�

(d) R3M - Drawer-Close

� ��� ��� ��� ���

�����

����

����

����

����

����

(e) VIP - Drawer-Close

� ��� ��� ��� ���

�����

���

���

���

���

���

���

(f) PROGRESSOR- Drawer-Close

� ��� ��� ��� ���

�����

����

����

����

����

����

����

����

�
��
��

�
��
��
�
�

(g) R3M - Push-Block

� ��� ��� ��� ���

�����

����

����

����

����

����

(h) VIP - Push-Block

� ��� ��� ��� ���

�����

���

���

���

���

���

���

���

���

�
��
��

�
��
��
�
�

(i) PROGRESSOR- Push-Block

� ��� ��� ��� ���

�����

����

����

����

����

����

����

����

�
��
��

�
��
��
�
�

(j) R3M - Pick-Place-Cup

� ��� ��� ��� ���

�����

����

����

����

����

(k) VIP - Pick-Place-Cup

� ��� ��� ��� ���

�����

���

���

���

���

���

���

���

(l) PROGRESSOR- Pick-Place-Cup

Figure 13. Mean reward predictions r̂ of (left column) R3M, (middle column) VIP, and (right column) PROGRESSOR for correct
and incorrect demonstrations for the Drawer-Close, Push-Block, and Pick-Place-Cup tasks. PROGRESSOR provides reward
predictions (weights) that better differentiate between correct and incorrect trajectories, consistently outperforming the baseline models.


