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Supplementary Material

In this supplementary material, we provide details of
prompt generation in Section A, along with structured ex-
amples of generated descriptions. Then we present addi-
tional quantitative results and analysis in Section B and Sec-
tion C, followed by qualitative analysis in Section D. Then
we present the dataset statistics in Section E. Finally, we
address some limitations and outline directions for future
research in Section F.

A. Details of Prompt Generation

We use the following structured prompt template designed
to extract biometrics, non-biometrics, and motion-related
details from the key-frame of a given RGB video.

Analyze the given image where
action label is <action label>
and extract the following
details: Biometrics: A
<physique/body shape> person
with <posture>, such as
arms/legs positioning. Motion:
Performing the action of <action
label> by <action description>.
Non-biometrics: A <color,
type of clothing> and <other
accessories>.

This prompt template is fed into the frozen VLM
along with the key-frame, allowing the model to gener-
ate structured textual descriptions for each feature category.
The output is then parsed into three distinct textual em-
beddings corresponding to biometrics, motion, and non-
biometrics, ensuring explicit separation of identity-related
and appearance-based cues. By incorporating structured
textual supervision, this approach enhances feature disen-
tanglement, enabling the model to learn identity-relevant
representations while mitigating appearance bias. In Figure
7, we present examples of structured textual descriptions
generated using a Vision-Language Model (VLM) from a
given key-frame and its associated action label.

B. Additional Results

In Table 6 we present performance comparison of our
method with existing works and report the rank 5 accuracy.
We present the result of our model on the excluding same
view evaluation protocol in Table 7. From both of these ta-
bles, we observe that our model constantly outperforms all
the existing models across all datasets.

C. Additional Analysis

C.1. VLM quality is not a performance scalability
bottleneck

We evaluate VLM scalability using two prompt variants:
simplified slot-filler prompts (e.g., “a [body shape]
person”), and fine-grained 4-way disentanglement (bio-
metrics, motion, (upper/lower)-body clothing). As shown
in Figure 8, even simple prompts significantly improve per-
formance over no prompts, highlighting the value of seman-
tic structure over linguistic richness. In contrast, granular
prompts reduce performance and add complexity. Since all
fine-grained features fall within the core axes of biometrics,
non-biometrics, and motion, our 3-way setup remains more
robust and scalable. Moreover, by restricting VLM use to
training only and using structured prompts, we reduce noise
and ensure that performance does not heavily depend on
VLM strength.

C.2. Cross-domain utility of disentangled features.

We evaluated cross-domain generalization from NTU RGB-
AB to PKU MMD-AB (Table 8), and found that while bio-
metrics (Fb) transfer well, motion (Fm) showed slightly
lower performance due to action variability. Their combi-
nation yields the best performance, confirming their com-
plementary strengths (Table 3) even across domains.

C.3. Further analyzing feature disentanglement

We conducted three analyses to validate that the model truly
separates features in a visually grounded manner—rather
than merely aligning to prompt format.
Mutual Information Analysis: To verify disentanglement,
we compute InfoNCE-based mutual information between
each feature pair using empirically estimated upper and
lower bounds derived from matched (same actor/action) and
mismatched (different actor/action) pairs of NTU RGB-AB
(Figure 9). The relatively lower InfoNCE for Fb ↔ Fm

falls within a wider range, indicating some mutual infor-
mation, expected due to identity-linked motion cues such
as gait, swing style etc. This highlights Fm as a com-
plementary cue to Fb for identity matching. In contrast,
Fb ↔ Fb̂ and Fm ↔ Fb̂ show consistently higher losses
within tighter bounds, confirming minimal shared informa-
tion and effective disentanglement.
Cross Feature Leakage Test: To further verify disentan-
glement, we trained classifiers to predict action from Fb

(biometrics) and Fb̂ (non-biometrics) on NTU RGB-AB. Fb

achieved 14.4% accuracy, reflecting some posture-related
cues embedded in body shape. These cues are expected,



Analyze the given image where action label is <action label> and extract the following details.

Biometrics: A <physique/body shape> person with <posture>, such as arms/legs positioning. 

Motion: Performing the action of <action label> by <action description>. 

Non-biometrics: A <color, type of clothing> and <other accessories> 

Biometrics: A lean-built person with
upright posture, arms raised above head

and legs slightly bent.  

Non-biometrics: A black long-sleeve shirt
and black pants with dark sneakers.

Motion: Performing the action of "cheer
up" by raising both arms enthusiastically

while slightly lifting off ground.

Biometrics: A medium-built person with
upright posture, standing with one hand

raised to the side of the neck.

Non-biometrics: A yellow graphic t-shirt
and dark shorts with sports shoes with

orange accents.

Motion: Performing the action of "neck
pain" by placing one hand on the neck
while slightly tilting the head to one

side.

Figure 7. Examples of generated structured textual descriptions.

Table 6. Performance comparison of person reidentification on NTU RGB-AB, PKU MMD-AB, and Charades-AB datasets. Here we
report rank 5 accuracies. † represents results produced in our environment. Bold represents best results.

Model Venue NTU RGB-AB PKU MMD-AB Charades-AB
Same Cross Same Cross Same Cross

Models with only visual modality
TSF [28] AAAI 20 72.9 70.3 78.5 73.5 38.2 32.1
VKD [44] ECCV 20 68.9 69.2 80.0 74.3 38.9 34.4
BiCnet-TKS [25] CVPR 21 75.7 70.7 83.0 78.7 41.9 40.6
PSTA [51] ICCV 21 69.7 67.7 79.1 74.0 45.0 40.5
STMN [15] ICCV 21 74.8 71.9 79.6 73.3 41.3 35.3
SINet [6] CVPR 22 71.1 69.1 82.2 78.0 42.3 38.7
CAL [19] CVPR 22 78.6 76.5 86.0 81.2 48.2 45.3
Video-CAL [19] CVPR 22 81.3 79.5 83.1 82.5 50.1 48.5
PSTR [7] CVPR 22 71.2 69.3 85.2 80.0 40.2 37.2
AIM [55] CVPR 23 73.4 71.8 83.5 80.4 42.1 37.6
SCNet [20] ACM MM 23 71.9 70.3 81.4 74.9 34.5 30.2
ABNet [3] CVPR 24 85.3 81.4 91.4 89.3 51.0 52.0

Models with visual +language modality
CLIP ReID † [32] AAAI 23 79.2 77.3 85.0 83.2 46.8 44.6
CCLNet † [10] ACM MM 23 78.2 77.1 86.7 82.5 45.9 41.7
TF-CLIP † [58] AAAI 24 79.6 77.0 85.9 84.1 43.7 42.1
TVI-LFM † [26] NeurIPS 24 78.9 77.5 87.1 83.5 49.5 46.3
Instruct-ReID † [22] CVPR 24 81.1 79.6 87.3 83.5 47.9 43.1
EVA-CLIP [49] 75.4 72.8 77.2 72.1 41.3 33.8
Ours 88.5 86.4 94.7 90.5 56.8 54.1

as they are stable biometrics components, but do not repre-
sent dynamic motion. On the contrary, Fb̂ scored near ran-
dom (4.8%), confirming no motion leakage into appearance
features. These results supports minimal unintended in-
formation transfer across branches. Causal Intervention:
Additionally, to test if disentanglement stems from prompt
structure, we swapped prompt semantics across branches

without changing losses. Despite this deliberate mismatch
(e.g., motion prompts guiding biometrics features), identity
and action performance dropped only marginally (1–2%) on
NTU RGB-AB, suggesting that feature separation is guided
by visual supervision rather than prompt formatting.



Table 7. Performance comparison of our model on NTU RGB-AB,
PKU MMD-AB, and Charades-AB datasets for excluding same
view evaluation protocols.

Eval. Model Rank 1 mAP

NTU

Same
activity

ABNet [3] 77.8 38.8
DisenQ 80.7 40.9

Cross
activity

ABNet [3] 76.4 36.1
DisenQ 79.3 37.6

PKU

Same
activity

ABNet [3] 81.4 51.7
DisenQ 84.2 55.1

Cross
activity

ABNet [3] 79.4 46.3
DisenQ 82.4 50.5
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Figure 8. Prompt structure vs. accuracy and VLM reliance (NTU
RGB-AB).

Table 8. Utility of disentangled features across domain.

Feature Rank 1
Baseline 61.7
Fb 74.3
Fm 68.1
Fb, Fm 76.8
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Figure 9. Mutual info (MI) analysis.

C.4. Risk of VLMs’ inherent bias propagation
To address potential VLM bias linking appearance with
identity, we use the VLM only to generate controlled at-
tributes’ descriptions within predefined, structured prompt
templates, not free-form text. We further mitigate residual
VLM correlations by enforcing orthogonality (Equation 6)
and excluding non-biometrics features from identity match-

ing (Equation 7). Together, these steps minimize any im-
plicit bias and maintain clean disentanglement between ap-
pearance and identity features. While these design choices
aim to mitigate potential sources of bias, we acknowledge
that some demographic bias may still persist due to up-
stream VLM pretraining, which is beyond the scope of this
work.

C.5. Non-biometrics branch encodes appearance
information to some extent

While the non-biometrics branch lacks explicit supervision,
it is guided by appearance-focused prompts and regularized
via orthogonality to remain distinct from biometrics. Color
histogram analysis of Figure 3 indicates that neighboring
pairs in the non-biometrics space tend to have more simi-
lar appearance attributes (0.81 vs. 0.54 for random pairs),
suggesting that the learned features in this branch reflect
clothing-related information to some extent.

D. Qualitative Results
Figure 10 illustrates the top 4 rank retrieval results for a
given probe for NTU RGB-AB dataset in both same and
cross-activity evaluation setting. This demonstrates the ro-
bustness of our model across diverse activities and signif-
icant appearance variations. Unlike traditional approaches
that struggle with identity retention under clothing changes
or motion variations, our method effectively disentangles
biometrics, non-biometrics, and motion cues, ensuring ac-
curate identification even when activities differ between the
probe and gallery. The strong retrieval performance high-
lights the effectiveness of our approach in learning identity-
consistent representations that generalize across diverse set
of real-world activities.

E. Dataset statistics
We evaluate performance under two evaluation protocols:
same-activity and cross-activity. In the same-activity set-
ting, all activities are present across both sets, ensuring that
each individual is observed performing the same set of ac-
tions. In contrast, the cross-activity protocol introduces a
more challenging scenario where individuals appear in dif-
ferent activities across the two sets, meaning that activi-
ties seen in one set are entirely absent in the other. For
datasets with multiple viewpoints, such as NTU RGB-AB
and PKU MMD-AB, we further assess two variations: in-
cluding same view, where all viewpoints are available in
both probe and gallery, and excluding same view, where
probe viewpoint is excluded from gallery, increasing the
difficulty of matching individuals across different perspec-
tives. This allows us to analyze the model’s robustness to
viewpoint variations. However, for datasets like Charades-
AB, which do not contain explicit viewpoints data, only



Figure 10. Qualitative results. Here we present the top 4 rank re-
trieval results for a given probe (left) of our model on same-activity
(top) and cross-activity (bottom) on NTU RGB-AB dataset.

Table 9. Dataset statistics

Dataset Split #actors #activities #samples

NTU
RGB-AB

train 85
94

70952
gallery

21
14192

probe 3548

PKU
MMD-AB

train 53
41

13634
gallery

13
2727

probe 681

Charades-
AB

train 214
157

45111
gallery

53
9022

probe 2256

MEVID
train 104

1
6338 (tracklets)

gallery 52 316 (tracklets)
probe 54 1438 (tracklets)

the activity-based protocols are considered. Since, MEVID
only contains one activity (e.g. walking), the evaluation of
this dataset also falls under the same-activity setting. As
MEVID primarily features walking sequences, we assign all
tracklets a “walking” label to enable coarse motion supervi-
sion, while being consistent with standard re-ID protocols
that leverage gait. Since occasional secondary actions are
concurrent with walking, it allows us to still use motion su-
pervision without explicit activity labels. A detailed dataset
statistics is presented in Table 9.

F. Future Work
While our method demonstrates strong performance in dis-
entangling biometrics, non-biometrics, and motion features
for activity-based person identification, there are areas for
further exploration. The reliance on structured text supervi-
sion ensures effective feature separation, but future work
could explore more flexible multimodal alignment tech-

niques to further enhance robustness in unconstrained set-
tings. Additionally, integrating a memory-modeling frame-
work, could enhance identity tracking across much longer
activity sequences, ensuring stability even under extreme
motion variations or video length.
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