
A. Appendix

A.1. Construction of Pick-High Dataset
A.1.1. Refining Prompt Construction
We selected 360,000 relatively short prompts from the
pickapic v2 dataset’s prompt collection as our base
prompts. As shown in Figure 9, to refine these base
prompts, we first employed a GPT-2 model (Prompt-
Extend) trained on di�usion model prompts, which
generates appropriate style and detail descriptions
based on the prompt’s main theme. To further enhance
the prompts’ coherence and granularity, we designed
a chain-of-thought template and utilized the Claude-
3.5-sonnet for chain-of-thought reasoning. Through
this process, we filtered out descriptions that didn’t
match the base prompt’s style and any inadvertently
introduced anomalous content, while simultaneously
enriching the prompts with thematically appropriate
aesthetic and stylistic information.

A.1.2. Image Collection and Dataset construction
Given the limitations in generalization performance of
vision language models[24, 33, 45], we additionally ver-
ified whether the refined prompts fully preserve the
core concepts of the base prompts while introducing no
conflicting information.. Our verification included: (1)
Filtering out NSFW contents rejected by Claude-3.5-
sonnet (≥2%); (2) Applying a binary verification CoT
template to exclude non-compliant samples (≥7%);
Additionally, expert evaluation of 1000 randomly sam-
pled Pick-High items confirmed 97% prompt and 95%
image compliance with requirements. Based on this,
we input all refined prompts into the Stable Di�usion-
3.5-large model to generate 360,000 high-quality im-
ages, forming our proposed Pick-High dataset. Since
the base prompts in the Pick-High dataset originate
from the filtered results of the pickapic v2 dataset, the
natural fusion of these two datasets creates a training
dataset with ternary preference relationships and sig-
nificant quality variations.

A.2. Experiment Details
Our experimental framework comprises three sequen-
tial phases: ICT model training, HP model training,
and di�usion model optimization.
ICT Model Training In the first phase, we fine-tune
all parameters of the CLIP-H model [4] using MSE loss
to optimize ICT scores. Training is conducted on 8
NVIDIA A800 GPUs for a total of 40,000 iterations.
We employ the AdamW optimizer [16] with a learning
rate of 3e-5. The smoothing coe�cient – and threshold
parameter — in the negative sample smoothing function
are set to 20 and 6, respectively, while the balancing

factor ⁄ in the loss function is 0.1. HP Model Train-
ing In the second phase, we keep the ICT model pa-
rameters fixed and only fine-tune the latter half of the
CLIP-H model [4] parameters and its connected MLP
layers. Training is similarly performed on 8 NVIDIA
A800 GPUs for 50,000 iterations. The margin thresh-
old m is set to 0.2, using the AdamW optimizer [16]
with a learning rate of 3e-6.
Di�usion Model Optimization In the final phase,
we optimize the di�usion model using the trained re-
ward models. We select Stable Di�usion-3.5-turbo as
the base model and conduct training in half-precision
(FP16). The di�usion process is configured with 8
sampling steps and a Guidance Scale of 0.0. Follow-
ing the DRaFT-K method [5], we only propagate gra-
dients through the last 3 denoising steps to optimize
the LoRA parameters in the transformer layers, while
keeping all other base model parameters frozen. Train-
ing is performed on 5 nodes equipped with 8 NVIDIA
A800 GPUs each, for a total of 3,000 iterations, with
a training time of approximately 24 hours. We utilize
the AdamW optimizer [16] with a learning rate of 5e-6.

A.3. Comprehensive Reward Scoring for Original
and Refine Images Across Diffusion Models

We randomly selected 800 base prompts from Di�u-
sionDB [36] and COCO Captions [6], and obtained re-
fined prompts through optimization by large language
models. These two sets of prompts were input into
six di�usion models with diverse architectures (SD1.5,
SDXL, SD3.5-Turbo, SD3.5-Large-Turbo, FLUX.1-
schnell, and FLUX-1.dev) for image generation. We
use the su�x “e” to denote images generated with
base prompts and “r” for images generated with re-
fined prompts.

As shown in Table 6, when evaluating images gener-
ated from refined prompts, scores decrease across both
basic multimodal models (CLIP and BLIP) and all hu-
man preference models. This indicates that images
generated from refined prompts contain richer infor-
mation, resulting in reduced text-image similarity. No-
tably, our refined prompts, filtered through the chain-
of-thought process of large language models, do not
contain semantically irrelevant subjects or style words.
Therefore, refine images do not introduce text-image
misalignment, but rather enhance aesthetic qualities,
details, and texture-related information.

Experimental results demonstrate that aesthetic
metrics based solely on the image modality show im-
provement across all test cases, confirming that images
generated from refined prompts indeed contain richer
visual information. Since pure image modality evalu-
ation is not a�ected by explicit or implicit text-image



A dog doing weights，
epic oil painting.

A dog doing weights. epic oil painting.  dramatic angle. rembrandt 
lighting. high quality. ornate.  octane render.  8k. exquisite gradient 
background. cinematic post-processing. trending on artstation. 
baroque style.  cinematic effect. smooth

Your task is to refine the first prompt by enhancing it with detailed descriptions and stylistic elements, ensuring full alignment with the original 
prompt's semantics without adding conflicting or irrelevant details.
1. Output only the final prompt, enclosed in quotes, without any additional explanations or steps. Ensure the prompt does not exceed 50 words.
2. Craft a detailed description based on the first prompt's main content, limiting it to no more than 25 words. This description must adhere strictly to the 
first prompt’s theme, incorporating all its elements while avoiding conflicts or irrelevancies.
3. Evaluate style descriptions in the second prompt. Retain only those that are consistent with both the first prompt and the detailed description. Eliminate any 
descriptions that conflict with or diverge from the first prompt’s theme.
4. Integrate the first prompt, the detailed description, and the retained style descriptions into a cohesive final prompt. 
5. Conduct a final review to ensure no elements in the final output are unrelated or contradictory to the first prompt, adjusting to produce the optimized output.

Let’s think step by step.

Prompt-Extend 
( GPT-2 base)

Claude-3.5-Sonnet Claude-3.5-Sonnet

A muscular dog lifting weights in a gym, portrayed in an epic oil painting style. Dramatic angle, Rembrandt lighting, ornate 
details. Exquisite gradient background. Cinematic post-processing. High-quality, 8K resolution.

Figure 9. The Overview of Prompt Refinement Pipeline via Large Language Model Chain-of-Thought.

Model CLIPø ITMø ImgRwdø HPSø Pickø Aesø ICTø HPø ICT-HPø
SD1.5e 0.336 0.697 0.188 0.267 20.689 5.884 0.667 0.672 0.457
SD1.5r 0.309¿ 0.575¿ ≠0.078¿ 0.264¿ 20.395¿ 6.169ø 0.680ø 0.685ø 0.477ø
SDXLe 0.367 0.807 0.719 0.272 21.853 6.446 0.898 0.772 0.695
SDXLr 0.338¿ 0.715¿ 0.687¿ 0.271¿ 21.789¿ 6.857ø 0.908ø 0.776ø 0.705ø
SD3.5-Te 0.340 0.831 0.955 0.277 22.034 6.555 0.910 0.777 0.717
SD3.5-Tr 0.326¿ 0.757¿ 0.914¿ 0.276¿ 22.012¿ 6.780ø 0.923ø 0.781ø 0.718ø
SD3.5-Le 0.356 0.881 1.038 0.277 21.950 6.403 0.943 0.777 0.732
SD3.5-Lr 0.334¿ 0.800¿ 0.955¿ 0.276¿ 21.853¿ 6.704ø 0.939¿ 0.779ø 0.731¿
FLUX Se 0.349 0.866 0.974 0.277 21.739 6.439 0.891 0.763 0.683
FLUX Sr 0.335¿ 0.800¿ 0.893¿ 0.276¿ 21.657¿ 6.691ø 0.909ø 0.773ø 0.704ø
FLUXe 0.333 0.818 0.982 0.279 22.021 6.642 0.906 0.775 0.703
FLUXr 0.326¿ 0.791¿ 0.967¿ 0.278¿ 21.899¿ 6.846ø 0.919ø 0.778ø 0.715ø

Table 6. Quantitative Results of Image Generation Models.

comparison objectives, its assessment results align with
human preference trends.

Our trained ICT model, HP model, and the com-
bined ICT-HP model show score improvements across
almost all tested models, strongly demonstrating that
the ICT training objective successfully addresses the
inherent deficiency between instance-level text-image
alignment and human preferences. The results indi-
cate that as the generation model quality reaches high
levels, the ICT metric maintains stable high values,
suggesting our ICT scoring mechanism does not nega-

tively evaluate high-quality images after reaching the
text-image alignment inflection point. The HP model,
as a reward model trained solely on the image modal-
ity, ensures higher scores for refine images in all test
scenarios. In the current implementation, the ICT-HP
score is calculated through a simple product of ICT and
HP scores; future research could explore more optimal
methods for integrating these two models.



Model Mean ø Singleø Twoø Countingø Colorsø Positionø Color Attributionø

SDXL 0.55 0.98 0.74 0.39 0.85 0.15 0.23

DALL-E 2 0.52 0.94 0.66 0.49 0.77 0.10 0.19

DALL-E 3 0.67 0.96 0.87 0.47 0.83 0.43 0.45

SD3 0.68 0.98 0.84 0.66 0.74 0.40 0.43

FLUX.1-Schnell 0.68 0.99 0.88 0.62 0.76 0.30 0.51

+ ICT-HP (Ours) 0.69 0.99 0.88 0.62 0.81 0.29 0.81
+ ICT (Ours) 0.69 0.99 0.88 0.60 0.81 0.29 0.55

FLUX.1-dev 0.66 0.97 0.82 0.71 0.78 0.22 0.45

+ ICT-HP (Ours) 0.67 0.99 0.82 0.74 0.80 0.20 0.51
+ ICT (Ours) 0.67 0.98 0.81 0.73 0.80 0.19 0.50

Table 7. Quantitative GenEval Results of FLUX.1-schnell with RM-Optimized LoRA (HP/ICT-HP) and
Transfer Performance on FLUX.1-dev.

A.4. Optimizing FLUX.1-schnell with HP and ICT-
HP Models: Implementation and Evaluation

We applied our proposed HP model and ICT-HP model
to optimize the flux.1-schnell architecture. During
training, we employed half-precision (FP16) to en-
hance computational e�ciency. The di�usion process
was configured with a 4-step sampling procedure and
a Guidance Scale of 0.0. Following the DRaFT-K
methodology [5], we selectively propagated gradients
through only the final denoising step to optimize the
LoRA parameters within the transformer layers, while
maintaining the integrity of other parameters in the
base model. The experimental setup consisted of 4
computing nodes, each equipped with 8 NVIDIA A800
GPUs, supporting a total of 3,000 training iterations
completed in approximately 24 hours. For optimiza-
tion, we utilized the AdamW optimizer [16] with a
learning rate of 5e-6. Herein, we present both quali-
tative analysis and quantitative evaluation results on
the GenEval benchmark.

Table 7 presents the quantitative results of our
FLUX.1-schnell optimization using both the ICT-HP
model and ICT model. Additionally, we directly trans-
ferred the LoRA weights trained on FLUX.1-schnell to
FLUX.1-dev to obtain quantitative performance met-
rics within the multidimensional GenEval evaluation
framework. Our ICT-HP and ICT models demon-
strated notable advantages compared to the baseline
models, with particularly significant improvements in
color-related scores. These results indicate that our re-
ward model e�ectively enhances the color fidelity of the
FLUX model series.

A.5. Comprehensive Presentation of Diverse Qual-
itative Results

Simple Element Generation Qualitative Re-
sults. To evaluate our model’s performance in text-

image alignment, particularly under minimal prompt
conditions, we provide additional qualitative results of
simple element generation, thoroughly demonstrating
our method’s excellence in text-image consistency. As
shown in Figure 11, we compared the original SD3.5-
turbo with results optimized by CLIP model, ICT
model, and ICT-HP model. Through detailed ob-
servation, it is evident that the original SD3.5-turbo
exhibits significant limitations when executing mini-
mal instructions; while the CLIP model-optimized ver-
sion improves text-image alignment in some scenar-
ios, it performs inconsistently across various situations.
Among all variants, the ICT model optimization solu-
tion demonstrates the most precise and e�cient e�ects,
perfectly meeting all prompt requirements; meanwhile,
the ICT-HP model optimization solution achieves near-
optimal performance, with overall quality significantly
superior to the CLIP model-optimized version. These
experimental results strongly confirm that our innova-
tive method not only significantly enhances the model’s
overall performance, but also successfully maintains
and strengthens the base model’s accurate understand-
ing of clear, minimal concepts.
Qualitative Comparison of Optimization Re-
sults. In Figure 12, we provide more examples of
various reward optimizations. Based on our observa-
tions, ImageReward struggles to further optimize the
high-performance di�usion model SD3.5-Large-Turbo,
therefore we have excluded the qualitative results of
ImageReward in this instance.
Qualitative Comparison Between Optimization
Results and Refine images. In Figure 13, we
present comparative displays of additional original im-
ages, refine images, and results optimized through our
model, confirming that our reward model can surpass
the performance of prompt refinement.
Qualitative Comparison of Style Injection Re-



sults. In Figure 14, we showcase additional qualitative
results demonstrating style transfer achieved by ex-
tracting stylistic elements using Image-Encoders from
both the HP model and the ICT model.

B. Mathematical Framework and The-

oretical Foundation of ICT-HP Re-

ward System

B.1. Information Saturation Hypothesis and ICT
Metric Formulation

We propose the Information Saturation Hypothesis as
mathematical foundation of ICT:

Hypothesis 1 (Information Saturation Hypothesis).
For any image-text pair (v, t), there exists a mutual infor-
mation critical value Iú

(v, t) such that v semantically aligns
with t if and only if I(v; t) Ø Iú

(v, t).

As detailed in Section 3, the CLIP score is formu-
lated as

CLIP(v, t) ¥ I(v; t)
(I(v; t) + I(v|t)) · I(t)

(14)

When I(v; t) = Iú(v, t), according to the Information
Saturation Hypothesis, the image fully contains the
textual information, and

CLIPú(v, t) ¥ Iú(v, t)
(Iú(v, t) + I(v|t)) · I(t)

(15)

Since this function decreases monotonically with I(v|t),
its minimum value occurs at the critical threshold when
I(v|t) = Imax(v|t). To ensure all semantically aligned
image-text pairs receive an ICT score of 1, we set

◊ú = CLIPú
min ¥ Iú(v, t)

(Iú(v, t) + Imax(v|t)) · I(t)
(16)

Physically, ICT reflects boundary saturation e�ect in
human perception, where once an image adequately
represents text, further details don’t reduce alignment
score.

B.2. Preference Modeling and HP Metric Deriva-
tion

Our data contains image triplets (I1, I2, I3) from iden-
tical prompts with preference hierarchy I3 º I2 º I1,
justifying HP’s image-only approach. Bradley-Terry
models preferences as:

P (Ij º Ii) = 1
1 + exp(≠(s(Ij) ≠ s(Ii)))

(17)

The log-likelihood:

L = log P (I2 º I1) + log P (I3 º I2) (18)

has negative upper bound via convex function theory,
yielding ranking loss of HP Metric:

Lmargin =
ÿ

[max(0, ≠�(I2, I1) + m)

+ max(0, ≠�(I3, I2) + m)]
(19)

B.3. Multiplicative Integration Theory and System
Properties

Based on our analysis of CLIP scoring limitations, we
propose a multiplicative dual-metric evaluation system:

Reward(v, t) = ICT(v, t) · HP(v), (20)

where ICT and HP are defined as:

ICT(v, t) = I(v; t)
I(t) , (21)

HP(v) = f(I(v|t)). (22)

This multiplicative formulation o�ers significant
theoretical advantages:
1. Complementary Constraint: ICT ensures faith-

ful textual expression while HP evaluates aesthetic
quality; their product requires simultaneous satis-
faction of both conditions.

2. Threshold E�ect: When either metric approaches
zero, the overall reward approaches zero, prevent-
ing optimization of one aspect at the expense of the
other.

3. Non-linear Gain: When both ICT and HP im-
prove simultaneously, the reward function exhibits
accelerated growth, incentivizing concurrent en-
hancement of text containment and image quality.
In information-theoretic terms, the multiplicative

form can be expressed as:

Reward(v, t) ¥ I(v; t)
I(t) · f(I(v|t)), (23)

Compared to CLIP scoring:

CLIP(v, t) ¥ I(v; t)
I(t) · (I(v; t) + I(v|t))

. (24)

Our multiplicative formulation avoids the negative
impact of I(v|t) on the denominator in CLIP, instead
positively utilizing I(v|t) through the HP term, en-
abling accurate assessment of high-quality images.



Epic visualization of architectural structures generated by the urban context paradigm

low poly, pixar, un surreal hybrid animals, nostalgia for a fairytale, magic realism, flowerpunk

good day to hunt dragons, future, render of dreamy beautiful landscape, fantasy dreamy, artger

njord viking god of wealth, swedish man dressed in viking clothes, elegant, carrying gold coins

symmetrical centered medium portrait of maya ali as a sorcerer, adventure time style, matte 
painting concept art, pastel colours

FLUX.1_schnell
(easy prompt)

FLUX.1_schnell
(refine prompt)

FLUX.1_schnell
+ HP 

FLUX.1_schnell
+ ICT-HP 

Figure 10. Qualitative Results of Optimizing FLUX.1-
schnell.

“ simple black hexagon, single geometric shape”

“ minimalist red pentagram, single geometric figure”

“simple purple musical note icon, music symbol”

SD3.5-turbo +CLIP +ICT-HP +ICT

“ minimalist red and blue dual-color pie chart, evenly divided contrast”

“ minimalist green arrow pointing right, single direction indicator”

“a simple spiral shape”

Figure 11. More simple elements generate results.



SD3.5-Turbo +HPS +PickScore +ICT-HP+ICT +HP

airbrush art adjacent partner smpte pattern 

photo of a cat mariachi 

Relief Ceramic Polar Bear

Japanese Misty Fox Spirit

paintpunk trenchant baker cube  in nature

angelic pretty cyberpunk android robot 

Norse Frost Rabbit Warrior

a cyberpunk silkscreen pop art portrait 

Figure 12. Qualitative Comparison of Optimization Results Across Reward Models Using Real User Prompts.



SD3.5-Turbo
(easy prompt)

SD3.5-Turbo
(refine prompt)

SD3.5-Turbo
+ ICT-HP 

SD3.5-Turbo
+ HP 

Riding a jetski, the jetski 
is a dolphin, going way 
too fast, cartoon

Clean, marble machine, 
trump tower, factory, 
vertical greenery, future, 
techcity, bio, sustainable, 
redshift render

Epic azure skit, fly 
screenshot WoW mounts 
world boss fantasy 
comics borderlands-like

Morty in a spacesuit 
roams the universe, 
beautiful details, 
photorealistic, high end 
design, 8 k, mist, ornate

Highly detailed, black 
male anthro - lynx, 
human with head of lynx, 
long braided and beaded 
hair, facial scar, punk

A beautiful painting of a 
pyramid on the moon by 
nekro and pascal blanche 
and syd, hyper detailed, 
realistic, maya

Two people walking over 
a bridge while holding 
umbrellas.

A large tall building with 
a small bird flying over 
the top.

Figure 13. Qualitative Comparison: Origin Images, Refine Images, and Generations Optimized by Our Reward Models.



Style Ref InstantStyle +ICT Img-Encoder

“baroque phoenix with royal”

InstantStyle +ICT Img-Encoder InstantStyle +ICT Img-Encoder

"renaissance peacock with gold"

"art deco swan with geometric"

"kawaii penguin with pastel"

"vaporwave dolphin with retro"

"tribal elephant with ethnic"

"brutalist gorilla"

"psychedelic butterfly with rainbow"

"pop art zebra with bright""art nouveau deer with floral"

"art nouveau deer with floral"

“space age falcon”

(a) Qualitative Comparison of ICT Image-Encoder Performance in Style Injection Tasks.

InstantStyle +HP Img-Encoder InstantStyle +HP Img-Encoder InstantStyle +HP Img-Encoder

"renaissance peacock with gold"

"snowflakes" "steampunk owl with brass goggles"

"synthwave tiger with purple"

"art deco swan with geometric"

"kawaii penguin with pastel" "baroque lion with ornate""dieselpunk wolf with metal"

"retrowave bear with sunset"

"rococo rabbit with elegant"

"art nouveau deer with floral"

“ink style crane"

Style Ref

(b) Qualitative Comparison of HP Image-Encoder Performance in Style Injection Tasks.

Figure 14. Qualitative Results of Style Injection Tasks.
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