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Supplementary Material

S-1. Detailed Experiment Setups

Datasets. Table S-1 summarizes the experimental settings
of five datasets in this study under realistic SSL evaluation
protocols [8] with label distribution mismatch scenarios.
When we evaluated the SSL methods on multiclass classifi-
cation in Tables 1 and 2 of the main paper, and Table S-3, we
used only testing samples whose class labels align with the
label distribution of the labeled dataset. On the other hand,
when we evaluated the SSL methods on unseen-label data
detection in Table 3 of the main paper and Table S-4, we
used the original testing datasets, which contain all classes,
including classes not seen from the label distribution of the
labeled dataset. When we set the percentage of unseen-label
data existence (κ) to 60% in the unlabeled dataset, it indi-
cates that 60% of the training unlabeled samples come from
unseen classes, while the rest of the samples come from
seen classes.

Implementation for CIFAR-10, CIFAR-100, SVHN, and
TinyImageNet. Table S-2 summarizes the implementa-
tion details and hyperparameters used in our experiments
on CIFAR-10, CIFAR-100, SVHN, and TinyImageNet. All
hyperparameters listed in Table S-2 were chosen based on
achieving the highest average validation accuracy in multi-
class classification or were adapted from previous studies.
In the validation stage, we used 10% of the training dataset
for each of the four datasets. We used standard normal-
ization for scaling image data and several image augmen-
tations, such as weak and strong augmentations, to imple-
ment consistency regularization on SSL methods. The weak
augmentation used in this study includes horizontal-flip and
random-crop, and the strong augmentation is grounded on
RandAugment [2]. Additionally, when implementing other
SSL methods for comparison with CaliMatch in our exper-
imental setup, we referenced the official implementations
provided by the authors: MTC [13], FixMatch [11], Open-
Match [9], IOMatch [5], SCOMatch [12], and ADELLO
[10]. To the best of our knowledge, there is no official
code for the SafeStudent method; therefore, we directly
implemented it on our experimental setup, and the source
codes for SafeStudent and CaliMatch are distributed on our
GitHub*. All experiments were conducted using a single
12-GB GPU, such as an NVIDIA 3080 Ti.

Implementation for ImageNet. For our ImageNet ex-
periments, we trained CaliMatch, OpenMatch, and a su-

*https://github.com/bogus215/SafeSSL-Calibration.

pervised learning baseline using a distributed data-parallel
approach on two NVIDIA A100 GPUs (80 GB) with 32
CPU cores. The backbone architecture is ResNet 50 [3],
and training was conducted with a batch size of 160 la-
beled samples and 640 unlabeled samples per iteration. The
models were trained for 200 epochs, following a learning
rate schedule that included a linear warm-up phase over the
first five epochs, gradually increasing to an initial learning
rate of 0.4. Subsequently, the learning rate was decayed at
epochs 60, 120, and 160, with a reduction factor of 0.1 at
each step. Stochastic gradient descent (SGD) with Nesterov
momentum (0.9) was used for optimization. In CaliMatch
and OpenMatch, we applied two fixed thresholds (τ1 = 0.5
and τ2 = 0.7) used for OOD rejection and high quality of
pseudo-labels. A weight decay coefficient of 0.0003 was
used, incorporating L2 regularization on all model parame-
ters. For data augmentation, we applied strong augmenta-
tion, including random color jitter, random grayscale, and
random solarization, followed by an additional cutout op-
eration. Weak augmentation was implemented using ran-
dom horizontal flipping. During training, input images
were randomly cropped and rescaled to 192×192, while dur-
ing evaluation, images were center cropped and rescaled
to 224×224, following standard ImageNet evaluation prac-
tices.

S-2. Additional Results and Discussions

Calibration in Classification. Table S-3 presents the av-
erage ECE and standard deviation obtained from five runs
on four datasets. All SSL methods exhibited enhanced
calibration in comparison to supervised learning across
the four testing datasets. This improvement stems from
the enhanced accuracy achieved through SSL methods,
which reduced the discrepancy between relatively high con-
fidence and actual accuracy. However, most comparison
SSL methods failed to surpass the calibration improvements
achieved by CaliMatch, especially on SVHN, CIFAR-10,
and CIFAR-100 datasets. This highlights CaliMatch’s ef-
fectiveness in selecting high-accuracy data with high con-
fidence, a valuable trait in thresholding-based SSL. In the
case of MTC, it also showed improved calibration that was
comparable to our method in some cases. This can be at-
tributed to the smoothing-based calibration method, mixup,
used in MixMatch for MTC, which enhanced the calibration
of deep CNN. However, it did not consider the selection of
unlabeled samples using its well-calibrated confidence de-
spite its potential in SSL.



Table S-1. Label distribution and number of data on five benchmark datasets under safe SSL setup.

Dataset Training labeled dataset Training unlabeled dataset
Label

distribution
Number of data
for each class

Total
number of data

Label
distribution

Number of data
for each class

Total
number of data

SVHN 2,3,4,5,6,7 50 300 0-9 2,000 20,000
CIFAR-10 2,3,4,5,6,7 400 2,400 0-9 2,000 20,000

CIFAR-100 0-49 100 5,000 0-99 200 20,000
TinyImageNet 0-99 100 10,000 0-199 200 40,000

ImageNet 0-499 150 75,000 0-999 500 500,000

Unseen-label Data Detection. Table S-4 presents the av-
erage F1 and standard deviation of safe SSL methods
to evaluate the unseen-label detection performance across
five repeated runs with different random seeds. In the
case of FixMatch and ADELLO, we defined their unseen-
label score by subtracting confidence, which is the max-
imum probability value in multiclass classification, from
one. Among the eight SSL methods, OpenMatch and Cal-
iMatch showed the best or second-best performance across
all datasets. MTC also showed satisfactory performance on
SVHN and CIFAR-10, whose number of classes is rela-
tively small when compared to CIFAR-100 and TinyIma-
geNet. The F1 scores of MTC on CIFAR-100 and Tiny-
ImageNet indicate that MTC’s OOD detector made incor-
rect decisions by assigning all testing samples to classes,
which are in the label distribution of the labeled dataset.
This suggests that training the OOD detector on datasets
with a large number of similar classes can be unstable and
may fail to distinguish between unknown classes and simi-
larly known classes. When we implemented IOMatch using
its official code in our experimental settings, we empirically
observed that the projection head it utilized was sensitive to
the performance of its OOD detector, thus negatively affect-
ing unseen-label detection despite our efforts to find better
hyperparameter settings for IOMatch.

Learning Curves. To demonstrate our CaliMatch’s cali-
bration performance in terms of safe SSL, we also present
the learning curves of all SSL methods on SVHN, CIFAR-
10, and TinyImageNet in Figure S-1. In Figure S-1, we
can have a similar discussion with Figure 1 of the main pa-
per by demonstrating CaliMatch’s superiority and robust-
ness across all datasets. To highlight the SSL methods with
the best or second-best performance in each plot of Figure
S-1, we sometimes do not show the results of other SSL
methods in detail if their differences compared to the best or
second-best methods are significant. In the case of MTC on
CIFAR-10, it exhibited instability in learning, failing to sus-
tain long-term training. The training was interrupted around
the 80th epoch by a gradient exploding in its OOD detector.

Sensitivity Analysis. Table S-5 summarizes the results of
sensitivity analysis on two hyperparameters (λO and λOCal)
in CaliMatch. We observed that the performance of safe
SSL depends on the choice of λO and λOCal, but no sig-
nificant failures occurred within the range of hyperparame-
ters considered in this analysis. This suggests that, while a
naive choice of hyperparameters may not yield optimal per-
formance, our method is robust enough to perform reliably
in most cases. Furthermore, we confirmed that, across all
hyperparameter combinations, CaliMatch consistently out-
performed other safe SSL methods, such as OpenMatch and
IOMatch, in the multiclass classification task.

Safe SSL with Improved Calibration. Model calibra-
tion aims to align a model’s confidence scores with its actual
accuracy, particularly when the model exhibits overconfi-
dence or underconfidence. Effective calibration requires
accurately assessing the discrepancy between the model’s
predicted confidence and its true accuracy, allowing the ap-
propriate level of calibration to be applied. However, ex-
isting smoothing-based calibration methods, such as label
smoothing and mixup, typically rely on fine-grained grid
search to determine the optimal smoothing level but still
fail to generalize well across different data distributions.
Liu et al. [6] introduced a constrained-optimization ap-
proach to label smoothing and proposed margin-based LS
(MbLS) for improved calibration. MbLS relaxes the equal-
ity constraint used in standard label smoothing by enforc-
ing a more flexible inequality constraint, leading to bet-
ter calibration. However, MbLS applies a fixed smooth-
ing intensity to all instances, failing to adapt to variations
across different data regions. This limitation can result in
suboptimal calibration because different data samples re-
quire different levels of calibration. Similarly, Noh et al.
[7] proposed RankMixup, which ranks mixup-augmented
images and raw images based on their relative difficulty.
Their method assumes that a model’s confidence in mixup-
generated samples should be lower than in raw images,
helping to improve calibration. However, mixup-based cal-
ibration heavily depends on a hyperparameter controlling
the degree of interpolation, making it sensitive to tuning and



Table S-2. Implementation details and hyperparameters on CIFAR-10, CIFAR-100, SVHN, and TinyImageNet.

Shared
Training iterations (epochs) 500,000 (100)
Iteration period of validation 5,000
Learning rate 0.003
Learning rate decay factor 0.2
Learning rate decay at iteration 400,000
Optimizer Adam
CNN backbone network Wide ResNet 28-2 [14]
Batch size for labeled and unlabeled data on SSL 50

Supervised learning
Batch size for labeled data 100

MTC
Parameters (α,β) for the Beta distribution for mixup 0.75
Temperature parameter for sharpening in MixMatch 0.5
Coefficient for mean squared error loss on unlabeled data 75
OOD detector Single-layer perceptron
Pretraining iterations of OOD detector for stability 50,000
Finetuning iterations of OOD detector and MixMatch 450,000

FixMatch
Threshold for selecting unlabeled training data 0.95
Coefficient for cross-entropy loss on unlabeled data 1

OpenMatch
OOD detector Single-layer perceptron
Threshold for FixMatch 0.95
Threshold for selecting seen-label data 0.5
Coefficient for FixMatch’s loss on unlabeled data 1
Coefficient for entropy minimization of OOD detector 0.1
Coefficient (λS) for soft open-set consistency regularization loss 0.5
Warm-up training iterations for FixMatch 25,000

SafeStudent
Temperature parameter for calculating energy discrepancy {1,1.5}
Pretraining iterations for teacher model 100,000
Exponential moving average (EMA) factor 0.996
Iteration period for the teacher model with EMA update 50,000
Coefficient for confirmation bias elimination loss 1
Coefficient for unseen-class label distribution learning loss 0.01

IOMatch
OOD detector Single-layer perceptron
Open-set classifier Single-layer perceptron
Projection head Three-layer perceptron
Threshold for FixMatch 0.95
Thresholds for selecting seen-label data 0.5
Coefficients for FixMatch 1
Coefficients for multi-binary and open-set classifiers 1

SCOMatch
Size of OOD memory queue max{8×number of classes,256}
Initial value for OOD detection and FixMatch 0.95
Positive and negative head classifier Single-layer perceptron

ADELLO
Exponential moving average decay 0.999
Minimum of progressive alpha 0.1
Value of progressive K 2
Threshold for FixMatch 0.95

CaliMatch
OOD detector Single-layer perceptron
Threshold (τ2) for FixMatch 0.95
Threshold (τ1) for selecting seen-label data 0.5
Coefficient (λO) for classification loss of OOD detector {0.1,0.5,1}
Coefficient (λOCal) for calibration loss of OOD detector {0.0005,0.001,0.1}
Coefficient (λS) for soft open-set consistency regularization loss 0.5
Epoch (Ewarm-up) for warm-up stage in CaliMatch 5
Number (M ) of bins for adaptive label smoothing 30



Table S-3. Evaluation of multiclass classification using the averaged ECE and standard deviation (in parentheses) on four image benchmark
datasets under two different existence rates (κ%) of unseen-label data. The best results are in bold, and the second-best results are
underlined.

Dataset κ
Method

Supervised MTC FixMatch OpenMatch SafeStudent IOMatch SCOMatch ADELLO CaliMatch

SVHN
30%

0.203
(0.008)

0.054
(0.009)

0.029
(0.002)

0.021
(0.002)

0.011
(0.010)

0.025
(0.005)

0.024
(0.006)

0.027
(0.008)

0.003
(0.002)

60%
0.058

(0.008)
0.036

(0.002)
0.026

(0.002)
0.016

(0.010)
0.032

(0.002)
0.033

(0.004)
0.038

(0.008)
0.006

(0.002)

CIFAR-10
30%

0.121
(0.011)

0.085
(0.057)

0.097
(0.004)

0.096
(0.003)

0.107
(0.010)

0.083
(0.004)

0.076
(0.006)

0.091
(0.007)

0.031
(0.004)

60%
0.062

(0.008)
0.116

(0.007)
0.115

(0.007)
0.123

(0.005)
0.107

(0.009)
0.109

(0.004)
0.106

(0.005)
0.029

(0.003)

CIFAR-100
30%

0.340
(0.005)

0.046
(0.012)

0.234
(0.004)

0.226
(0.007)

0.161
(0.010)

0.216
(0.009)

0.264
(0.010)

0.233
(0.006)

0.025
(0.008)

60%
0.083

(0.036)
0.257

(0.012)
0.256

(0.006)
0.171

(0.010)
0.233

(0.007)
0.276

(0.010)
0.260

(0.007)
0.025

(0.007)

TinyImageNet
30%

0.513
(0.009)

0.120
(0.015)

0.385
(0.007)

0.388
(0.006)

0.323
(0.010)

0.363
(0.008)

0.406
(0.008)

0.398
(0.006)

0.189
(0.008)

60%
0.133

(0.020)
0.408

(0.006)
0.413

(0.008)
0.338

(0.010)
0.393

(0.007)
0.420

(0.009)
0.412

(0.009)
0.233

(0.006)

Table S-4. Evaluation of unseen-label data detection using the averaged F1 and standard deviation (in parentheses) on four datasets. The
best results are in bold, and the second-best results are underlined.

Dataset Method
MTC FixMatch OpenMatch SafeStudent IOMatch SCOMatch ADELLO CaliMatch

SVHN 0.701 0.200 0.858 0.676 0.118 0.867 0.188 0.889
(0.068) (0.023) (0.009) (0.003) (0.037) (0.010) (0.024) (0.028)

CIFAR-10 0.700 0.140 0.881 0.695 0.156 0.503 0.175 0.883
(0.029) (0.021) (0.013) (0.003) (0.063) (0.008) (0.033) (0.003)

CIFAR-100 0.001 0.486 0.696 0.691 0.419 0.385 0.442 0.687
(0.000) (0.026) (0.002) (0.002) (0.013) (0.016) (0.031) (0.006)

TinyImageNet 0.001 0.581 0.688 0.682 0.627 0.372 0.570 0.691
(0.000) (0.008) (0.002) (0.004) (0.039) (0.008) (0.009) 0.001

Table S-5. Sensitivity analysis of λO and λOCal for CaliMatch on CIFAR-10 with κ = 60%.

Coefficient Multiclass classification Unseen-label detection
λO λOCal Accuracy ECE F1 ECE

0.1 0.1 87.62 0.029 0.883 0.064
(0.36) (0.003) (0.003) (0.005)

0.1 0.05 87.94 0.037 0.881 0.066
(0.57) (0.010) (0.010) (0.013)

0.1 0.01 87.74 0.041 0.873 0.044
(0.57) (0.012) (0.006) (0.006)

0.5 0.1 87.51 0.037 0.875 0.074
(0.33) (0.013) (0.004) (0.014)

1 0.1 86.86 0.039 0.872 0.062
(0.22) (0.011) (0.006) (0.011)

potentially unreliable across diverse datasets.

In contrast, our calibration approach introduces a dy-
namic, adaptive mechanism that estimates the model’s cur-
rent accuracy at each training epoch using a labeled valida-
tion set. This enables the model to determine the appro-

priate level of label smoothing without requiring manual
hyperparameter tuning. We align the model’s confidence
distribution with the estimated accuracy through adaptively
smoothed labels with TM and TO. The two learnable pa-
rameters optimize themselves to stabilize the calibration



Table S-6. Evaluation of multiclass classification and unseen-label detection using OpenMatch with calibration methods, as well as Cali-
Match, on CIFAR-10 with κ set to 60%. The best results are in bold, and the second-best results are underlined.

Method Calibration Multiclass classification Unseen-label detection
Multiclass classifier OOD detector Accuracy ECE F1 ECE

OpenMatch ✗ ✗
86.19 0.115 0.881 0.126
(0.74) (0.007) (0.013) (0.006)

OpenMatch with
label smoothing

✓ ✗
86.84 0.082 0.854 0.121
(0.40) (0.004) (0.008) (0.008)

✓ ✓
83.49 0.074 0.887 0.070
(0.86) (0.017) (0.015) (0.014)

OpenMatch with mixup ✓ ✓
86.57 0.060 0.878 0.065
(0.36) (0.025) (0.024) (0.025)

OpenMatch with MbLS ✓ ✗
86.60 0.092 0.866 0.108
(0.51) (0.007) (0.011) (0.010)

OpenMatch with RankMixup ✓ ✗
87.13 0.095 0.829 0.147
(0.54) (0.008) (0.013) (0.014)

CaliMatch ✓ ✓
87.62 0.029 0.883 0.064
(0.36) (0.003) (0.003) (0.005)

process as the models learn the adaptively smoothed labels.
This stable characteristic would be a valuable factor when
it is applied to other frameworks. To support our claims,
we performed additional experiments on CIFAR-10 with
the 60% mismatch ratio to compare our approach and other
calibration methods. We applied various methods to im-
prove calibration performance to OpenMatch. The results
are summarized in Table S-6. We observed that all meth-
ods improved calibration performances compared to Open-
Match, but the improvement from our adaptive smoothing-
based calibration was the best and eventually improved safe
SSL. When the classic label smoothing was applied to both
the multiclass classifier and OOD detector of OpenMatch,
the OvR binary classifiers in the OOD detector exhibited
instability because of gradient explosion, failing to sustain
SSL training. This result highlights the importance of our
learnable parameter TM in OOD calibration.

Computational Complexity Analysis. To compare the
computational complexities of the training methods, we cal-
culate the number of floating point operations (FLOPs) re-
quired for one iteration of each approach. Note that the ex-
perimental setting for this analysis is on CIFAR-10 with κ
set to 60%. As shown in Figure S-2, the supervised learn-
ing baseline requires 42.89 giga FLOPs (GFLOPs, where 1
GFLOP = 109 FLOPs). Among all the SSL methods, Fix-
Match, IOMatch, and SafeStudent have moderate compu-
tational costs of approximately 64.34 GFLOPs, while Cal-
iMatch and OpenMatch exhibit slightly higher complexity
at 85.79 GFLOPs. This is because the two methods use
soft consistency regularization for OOD detectors based on
two weakly augmented unlabeled images, demonstrating
better OOD detection performance compared to the other
SSL methods. Although CaliMatch incorporates additional

techniques such as label smoothing and logit scaling, their
computational impact is negligible, leading to no significant
difference in FLOPs between CaliMatch and OpenMatch.
In contrast, SCOMatch incurs the highest computational
cost at 214.41 GFLOPs, significantly surpassing the other
SSL methods. This is because SCOMatch learns from not
only existing labeled and unlabeled data, but also new ad-
ditional data labeled as OOD samples from their proposed
OOD memory queue, resulting in increased computational
overhead.

Thresholding in Safe SSL. CaliMatch and OpenMatch
have two threshold values τ1 and τ2 for safe SSL. Specifi-
cally, τ1 and τ2 are used to implement OOD rejection and
FixMatch, respectively. On CIFAR-10 with κ set to 60%,
we investigated how the classification performance of Cal-
iMatch and OpenMatch varies as the two threshold values
change. As shown in Table S-7, although CaliMatch and
OpenMatch exhibit some accuracy fluctuations on various
τ1 and τ2 values, CaliMatch consistently achieves higher
accuracy across all settings, particularly at higher thresh-
olds.

Table S-7. Performance variations in CaliMatch and OpenMatch
on CIFAR-10 with κ set to 60%. CaliMatch’s results are in bold,
and OpenMatch’s results are in (parentheses).

Threshold τ2
0.93 0.95 0.97

τ1

0.5 87.36 (86.13) 87.62 (86.22) 87.90 (86.12)
0.6 87.63 (85.80) 87.62 (86.29) 87.84 (86.19)
0.7 87.25 (85.56) 88.13 (86.22) 87.85 (86.54)
0.8 87.25 (86.27) 87.72 (86.37) 87.95 (85.92)



Backbone Network Variation. To further evaluate the
performance of CaliMatch with two additional CNN back-
bone networks (DenseNet-121 [4] and ResNet-50), we con-
ducted experiments on CIFAR-10 with κ set to 60%. All
methods (CaliMatch, OpenMatch, and the supervised base-
line) shared the identical hyperparameter configuration as
those used in the experiments conducted for Table 1 of the
main paper. As shown in Table S-8, CaliMatch consistently
outperforms both OpenMatch and the supervised approach
in terms of accuracy, F1, and ECE across both backbone
networks, demonstrating its robustness in the presence of
unlabeled OOD samples during SSL. Notably, OpenMatch
on DenseNet-121 failed to surpass the supervised baseline,
highlighting its inability to mitigate the detrimental effects
of unlabeled OOD samples during SSL. These results un-
derscore CaliMatch’s effectiveness and generality in han-
dling safe SSL tasks across diverse backbone architectures.

Table S-8. Evaluation of multiclass classification and OOD detec-
tion of the baseline, OpenMatch, and CaliMatch with two popular
CNNs on CIFAR-10 with κ set to 60%. The best results are high-
lighted in bold. (ACC: Accuracy)

Backbone Method Classification OOD detection
ACC ECE F1 ECE

ResNet-50
Baseline 56.41 0.409 - -

OpenMatch 58.72 0.307 0.740 0.131
CaliMatch 72.73 0.123 0.784 0.120

DenseNet-121
Baseline 75.20 0.226 - -

OpenMatch 71.60 0.224 0.782 0.189
CaliMatch 80.81 0.070 0.831 0.096
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(c) TinyImageNet

Figure S-1. Learning curves averaged over five runs on SVHN, CIFAR-10, and TinyImageNet for CaliMatch and other SSL methods. The
shaded region indicates standard deviations calculated from five runs.
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S-3. Theoretical Justification
S-3.1. Setups.
Let Da

u = {(xu
i , y

u
i ) ∈ X × Ỹ : i = 1, · · · , nu} be a

set of unlabeled instances, where Ỹ represents the set of all
possible labels including the set of known labels Y . We
then consider Ds

u = {(xu
i , y

u
i ) ∈ Da

u : yui ∈ Y}, which
contains only in-distribution (ID) samples. By successfully
applying an OOD detection method on Da

u, we may obtain
Ds

u. Then we can calculate cross-entropy loss over Ds
u with

strong augmentations Ts for classification tasks:

LCE(D
s
u; Ts) = −

|Ds
u|∑

i=1

K∑
k=1

yuik log pk(Ts(xu
i )). (S-1)

Training a classifier by minimizing LCE(D
s
u; Ts) as well as

the cross-entropy loss on the labeled training dataset will
provide further improvement compared to the case when
we only consider cross-entropy loss on the labeled training
dataset. However, it is challenging to identify the “ideal”
dataset Ds

u under safe SSL scenarios.
The safe SSL methods try to address this problem by

having an OOD detector that identifies and discards in-
stances from unseen classes within the unlabeled dataset
Du. They approximate the true labels yui for the remaining
unlabeled instances in Du through pseudo-labeling tech-
niques, which assign pseudo labels to unlabeled instances
based on the model’s predictions. In practice, these meth-
ods construct a surrogate loss function, LFix(B

t
u; Tw, Ts)

(as seen in CaliMatch), which is designed to approximate
the ideal loss LCE(D

s
u; Ts). One key consideration for the

threshold-based safe SSL methods is that some unlabeled
ID samples, despite having correct pseudo-labels, may be
rejected from the surrogate loss computation because of low
confidence. Here, we provide a theoretical analysis demon-
strating how improving the calibration for both classifica-
tion and OOD detection in safe SSL facilitates the align-
ment of gradients between the surrogate loss (provided by
safe SSL) and the ideal loss (Equation (S-1)), computed on
the subset of samples that satisfy the thresholds. This align-
ment is crucial because, under stochastic gradient descent,
surrogate gradients that closely approximate the ideal gradi-
ents can lead to comparable optimization outcomes [1]. In
other words, approximating the gradient of the ideal loss is
sufficient to achieve a training effect similar to that obtained
if the ideal loss were used directly.

S-3.2. On the Importance of Calibration in Classi-
fication and OOD Detection.

The goal of safe SSL is to ensure the quality of pseudo-
labeling and the accuracy of OOD rejection, particularly
for samples that meet the confidence threshold and OOD
rejection threshold. The following lemma establishes that

improving model calibration reduces the probability of in-
correct pseudo-labeling or the inclusion of OOD samples in
the training set Bt

u.

Lemma 1. Assume the model is well-calibrated in the sense
that for any confidence level s ∈ [0, 1], the empirical ac-
curacy of samples with predicted confidence in an interval
[s− δ, s+ δ] is approximately s (with an error at most η for
sufficiently small δ > 0). Here, we define ε as follows:

ε = P

(
(xu

i ∈ Bt
u) ∧

(
(yui /∈ Y) ∨ (yui ̸= ŷui )

))
,

which represents the probability that a sample xu
i is either

OOD or incorrectly pseudo-labeled. If the thresholds sat-
isfy min{τ1, τ2} ≥ 1−η, then with probability at least 1−ε,
any xu

i from Bt
u belongs to an ID class and is assigned the

correct pseudo label:

P
(
(xu

i ∈ Bt
u) ⇒ (yui ∈ Y) ∧ (yui = ŷui )

)
≥ 1− ε.

Moreover, as model calibration improves (i.e., as calibra-
tion error η decreases), the probability of incorrect selec-
tion ε decreases.

This lemma implies that with better calibration, the num-
ber of incorrectly pseudo-labeled or OOD samples in the
training set is minimized, ensuring that the threshold-based
selection process primarily retains correctly pseudo-labeled
ID samples.

Proof. A well-calibrated model satisfies that for any inter-
val A ⊂ [0, 1] of predicted confidence scores, the empirical
accuracy on A is approximately equal to the mean confi-
dence over A. Formally, if A = {x | s(x) ∈ [s− δ, s+ δ]},
then,

∣∣∣P (y = ŷ | x ∈ A
)
−E[s(x) | x ∈ A]

∣∣∣ ≤ η. For sam-

ples xu
i in Bt

u, the empirical accuracy of pseudo-label is at
least τ2−η. In a similar way, by the calibration assumption,
the empirical OOD detection accuracy for selected samples
is at least τ1 − η. Hence, the probability that a sample xu

i is
either misclassified or OOD is bounded by

ε ≤ 1−min{τ1, τ2}+ η.

Thus, when the thresholds τ1 and τ2 are sufficiently high
and the model is well-calibrated (i.e., η is small), the prob-
ability of incorrect selection ε is minimized.

Next, we present a theorem that establishes how im-
proved calibration facilitates the alignment of gradients be-
tween the surrogate and ideal loss functions. This alignment
is crucial in ensuring that safe SSL optimization behaves
similarly to the supervised learning.



Theorem 1. Let LFix(B
t
u; Tw, Ts) be the FixMatch-based

loss on Bt
u, and let LCE(B

s
u; Ts) be the ideal cross-entropy

loss computed on all ID unlabeled data Bs
u sampled from

Ds
u with true labels. Define Bt

u ∩ Bs
u as the subset of ID

samples in Bt
u, i.e., the correctly classified ID samples that

meet the thresholds. Then, under the assumption that ε is
sufficiently small, the gradient difference satisfies:∥∥∇θLFix(B

t
u; Tw, Ts)−∇θLCE(B

t
u ∩Bs

u; Ts)
∥∥ ≤ Cε|Bt

u|,

where C is a positive constant.

This theorem asserts that as the calibration error de-
creases, the gradients of the surrogate loss function become
increasingly similar to those of the ideal loss, leading to
more stable and reliable optimization in safe SSL settings.

Proof. Let fθ(Ts(x)) produce logits zi = [zi,1, . . . , zi,K ]
for K classes, and denote pi = softmax(zi) as the pre-
dicted probabilities. The ideal cross-entropy loss for an ID
sample (xu

i , y
u
i ) ∈ Bs

u is given by:

ℓCE(zi, y
u
i ) = − log pi,yu

i
.

For a sample xu
i ∈ Bt

u with pseudo-label ŷui , the surrogate
loss is:

ℓCE(zi, ŷ
u
i ) = − log pi,ŷu

i
.

Step 1: Gradient Expression at Sample Level The gra-
dient of the loss with respect to the logits is given by:

∂ℓCE(zi, y)

∂zi,k
= pi,k − I(y = k).

For correctly pseudo-labeled samples (i.e., ŷui = yui ), we
have:

∂ℓCE(zi, ŷ
u
i )

∂zi,k
=

∂ℓCE(zi, y
u
i )

∂zi,k
,

meaning their gradient contributions to the surrogate and
ideal losses are identical. For incorrectly pseudo-labeled
samples (ŷui ̸= yui ), the gradient error per sample is:

∆gi =
∂ℓCE(zi, ŷ

u
i )

∂zi,k
− ∂ℓCE(zi, y

u
i )

∂zi,k
.

Since the difference between any two softmax gradients is
bounded, there exists a constant B such that:

∥∆gi∥ ≤ B.

Step 2: Batch-level Gradient Analysis Now, we analyze
the batch-level gradient over Bt

u and compare it to the ideal
batch gradient over Bt

u ∩Bs
u. The surrogate gradient over a

batch Bt
u is:

∇θLFix(B
t
u; Tw, Ts) =

∑
xu
i ∈Bt

u

∇θℓCE(zi, ŷ
u
i ).

The ideal gradient over a batch Bt
u ∩Bs

u is:

∇θLCE(B
t
u ∩Bs

u; Ts) =
∑

xu
i ∈Bt

u∩Bs
u

∇θℓCE(zi, y
u
i ).

By Lemma 1, with probability at least 1 − ε, a sample in
Bt

u is correctly pseudo-labeled, meaning that for these sam-
ples, the gradient difference is zero. However, for at most
ε-fraction of the samples, the gradient error per sample is
at most B. Thus, the total batch-wise gradient difference
satisfies:∥∥∇θLFix(B

t
u)−∇θLCE(B

t
u ∩Bs

u)
∥∥ ≤ Bε|Bt

u|.

Step 3: Extending to Model Parameters Using the
chain rule, since the Jacobian of the model parameters ∂z

∂θ
has a bounded norm L, the parameter-wise gradient differ-
ence satisfies:∥∥∇θLFix(B

t
u)−∇θLCE(B

t
u ∩Bs

u)
∥∥ ≤ LBε|Bt

u|.

Setting C = LB completes the proof.
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