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Method g Ts Fs Tu Fu
Cutie 0.635 0.652 0.667 0.579 0.642
OneVOS 0.642 0.657 0.663 0.591 0.657

EVOLVE 0.753 0.742 0.780 0.703 0.788

Table 1. Quantitative comparison on the LLE-YoutubeVOS 2019
dataset. The best results are boldfaced.

S-1. Comparison with state-of-the-arts on
LLE-YoutubeVOS 2019

We validate EVOLVE on larger dataset, YouTube-VOS
2019, by constructing synthetic low-light images with
event following the setting in [2]. As shown in Table 1,
our method consistently outperforms recent state-of-the-
art VOS [1, 3], demonstrating generalization to large-scale
dataset.

K J F  J&F FPS
0 0.709 0.731 0.720 453
1 0.741 0.760 0.750 42.7
5 0.779 0.783 0.781 37.6
7 0.780 0.781 0.780 342
Ours (3) 0.775 0.771 0.773 393

Table 2. Results according to the number of DMOT blocks K.

N J F T&F
0 0709 0731  0.720
1 0751 0740  0.745
5 0766 0761  0.763
Ours (3) 0.775 0771 0.773

Table 3. Results according to the number of reference frames V.

Q J F J&F
8 0.760 0.759 0.759
24 0.771 0.768 0.770
32 0.764 0.762 0.763
Ours (16) 0.775 0.771 0.773

Table 4. Results according to the number of memory tokens Q).

S-2. Hyperparameter

Tables 2, 3, and4 provide the results according to the num-
ber of DMOT blocks K, reference frames N, memory to-
kens @, respectively, on the LLE-VOS dataset. In Table 2,

Confidence score thresholds J F TJ&F
0.4 0.763 0.768 0.765
0.5 0.767 0.762 0.764
0.6 0.772 0.770 0.771
0.7 0.768 0.759 0.763
Ours (0.65) 0.775 0.771 0.773

Table 5. Results according to confidence score thresholds for mask
binarization of auxiliary masks.

we determine that setting the number of DMOT blocks to
three achieves the best trade-off between performance and
FPS. As shown in Tables 3 and 4, we select three reference
frames and 16 memory tokens, which yield the highest per-
formance. Table 5 presents the results according to the con-
fidence score threshold for binarization of auxiliary masks
in MRM. Experimentally, we achieve the optimal perfor-
mance when the threshold is set to 0.65.

Method ‘ Noise rate 0% Noise rate 10%  Noise rate 20%

Cutie 0.672 0.623(49])  0.598 (7.4 ])
OneVOS 0.683 0.633(5.01)  0.606 (7.7 ])
EVOLVE 0.773 0748 2.5]) 0729 (4.4 ])

Table 6. Results according to the rate of event noise.

S-3. Robustness on Event Noise

Table 6 show the results on LLE-VOS under different rate
of event noise. The event noise is simulated by randomly
flipping event polarities according to the specified noise ra-
tio. Compared to recently VOS methods [ 1, 3], the proposed
method shows less performance drop under event noise, in-
dicating strong robustness to noisy event data.

S-4. Loss function

Table 7 lists results according to different loss settings on
LLE-VOS. Removing the cross-entropy loss or Dice loss
degrades the segmentation performance. Moreover, we ob-
serve that including Dice loss for auxiliary masks obtained
from DMOT imporves the performance. This indicates that
the predicted auxiliary masks provide informative cues for
effective memory updates.
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Figure 1. Diagrams of different feature fusion approaches in EDFT. S; in EDFT means image and event features are simple added. Sz in
EDFT means image and event image features are concatenated. Finally, S3 in EDFT means employ cross-attention using image features

as queries and event features as keys and values.
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Figure 2. Diagrams of different feature fusion approaches in DMOT. S; and S5 in DMOT mean F,

(b) S5 in DMOT

(c) Se in DMOT

meobl and FEMO% gimply added and

. . . img-obj t-obj
concatenated, respectively. Sg in DMOT means two separate cross-attentions between F,"¢°” and F,"*""” are used.

Loss function J F TJ&F
w/o cross-entropy loss 0.732 0.742 0.759
w/o Dice loss 0.711 0.689 0.700
w/o Dice loss for auxiliary masks 0.751 0.748 0.759
Ours 0.775 0.771 0.773

Table 7. Ablation study on different settings of loss function.

Methods J F TJ&F
S1 in EDFT 0.732 0.729 0.731
S2 in EDFT 0.736 0.734 0.735
S3 in EDFT 0.759 0.748 0.754
Ours 0.775 0.771 0.773

Table 8. Ablation study on different feature fusions in EDFT.

Methods J F T&F
w/o self-attention 0.728 0.741 0.735
S4 in DMOT 0.741 0.750 0.746
S5 in DMOT 0.744 0.754 0.749
Sg in DMOT 0.773 0.770 0.771
Ours 0.775 0.771 0.773

Table 9. Ablation study on different feature fusions in DMOT.

S-5. Different feature fusion strategies in
EDFT and DMOT

Tables 8 and 9 present the ablation study results on differ-
ent feature fusion methods in event-guided deformable fea-
ture transfer (EDFT) and dual-memory object transformer

(DMOT), respectively. Detailed descriptions of these meth-
ods are provided in Figures 1 and 2.

As shown in Table 8, in the case of EDFT, S in EDFT,
simply adding image and event features, and S5 in EDFT,
concatenating them, result in low performances with J&F
scores of 0.732 and 0.736, respectively. S3 in EDFT, which
employ cross-attention using image features as queries and
event features as keys and values, achieves a J&F score
of 0.754. In contrast, the proposed EVOLVE designs event-
based deformable convolution to effectively align features
before feature transfer, addressing spatial misalignment in
low-light environments and achieving the highest J&F
score of 0.773.

As shown in Table 9, removing self-attention in DMOT
reduces the J&F score to 0.735, demonstrating the impor-
tance of global feature refinement. Sy and Ss in DMOT,
where F/™8°% and F£*"°" are simply added and concate-
nated, achieve the lower J&F scores of 0.746 and 0.749,
respectively. Sg in DMOT, applying cross-attention to
F™&° and FEY"°% each other, yields similar performance
to our method. However, two separate cross-attention oper-
ations for each iteration require more computational costs
than self-attention in EVOLVE. In contrast, the proposed
DMOT provides the best 7 &F score of 0.773.

S-6. Qualitative Results

Figures 3, 4 and 5 illustrate qualitative comparisons of the
proposed EVOLVE with Cutie [1] and OneVOS [3] on



LLE-DAVIS, LLE-VOS and LLE-YoutubeVOS 2019, re-
spectively. The proposed method effectively segments ob-
jects that are closer to the ground-truth compared to Cutie
and OneVOS. Figures 6 and 7 provides qualitative compar-
isons of EVOLVE according to the input modalities. We see
that faithful segmentation results are obtained when both
image and event data is used for VOS.

Source code. The source code for the EVOLVE implemen-
tation is included in the supplementary materials. We pub-
licly release it after the paper is accepted.
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(c) Cutie (d) OneVOS (e) Ours (f) Ground-truth

Figure 3. Qualitative comparisons on LLE-VOS.
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(a) Input image (b) Event (c) Cutie (d) OneVOS (e) Ours (f) Ground—;ruth
Figure 4. Qualitative comparisons on LLE-DAVIS.



(a) Input image ‘ (b) Event (c) Cutie (d) OneVOS (e) EVOLVE
Figure 5. Qualitative comparisons on LLE-YoutubeVOS 2019.

(a) Input image (b) Event (c) Image only (d) Event only (e) Ours (f) Ground-truth
Figure 6. Qualitative results of EVOLVE according to different input modalities on LLE-VOS.



(a) Input image (b) Event (c) Image only (d) Event only (e) Image + Event

Figure 7. Qualitative results of EVOLVE according to different input modalities on LLE-DAVIS.
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