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In this supplementary material, we first include addi-
tional details for our Ref-VPS dataset in Section A. Next,
we offer a deeper quantitative analysis, covering VAE-
based mask reconstruction, failure modes, and computa-
tional costs, etc., in Section B. Section C presents additional
qualitative evaluations, including visualizations on typical
failure cases, challenging fight scenes, and ambiguous or
overlapping scenarios. Finally, in Section D, we report all
the implementation details.

A. Ref-VPS Dataset Details

A.1. Dataset collection pipeline and statistics

During our dataset collection, we first established a non-
exhaustive taxonomy of five broad and possibly overlap-
ping concepts. This taxonomy was designed to encompass
key modes of dynamic change while offering a structured
framework for the task. The concepts and their definitions
are as follows:
• Temporal Object Changes: Phenomena where an ob-

ject’s state or shape evolves over time (e.g., object defor-
mation, melting)

• Motion Patterns: Motion in amorphous or non-rigid re-
gions (e.g., water ripples, flickering flames)

• Dynamic Environmental Changes: Environmental
transformations affecting spatial regions over time (e.g.,
clouds moving across the sky, waves rising )

• Interaction Sequences: Events characterized by inter-
actions between objects (e.g., bullet hitting glass, object
collisions)

• Pattern Evolution: Progressive changes in patterns or
textures (e.g., changing patterns of smoke dispersion,
fluctuating light levels)
Our final dataset comprises 145 video clips representing

39 distinct dynamic process concepts. We report a compre-
hensive list of key statistics in Table A. Most of our sam-
ples are between 2.5 and 5 seconds in length, but can go
up to more than 20 seconds. The distribution of our sample
lengths is reported in Figure A.

Figure A. Distribution of sample lengths in Ref-VPS. Most of our
samples are between 2.5 to 5 seconds in length, but can go up to
more than 20 seconds.

Clips 145
FPS 24
Frames 23,442
Concepts 39
Avg length (s) 6.74
Annotation FPS 6
Min-resolution 712× 576
Max-resolution 1024× 576

Table A. Statistics of our Ref-VPS benchmark. Our dataset con-
tains 145 video clips covering 39 concepts for dynamic processes.

A.2. Annotation visualizations
Figure B showcases examples of our Ref-VPS segmentation
mask annotations. Our annotations capture the full extent
of target objects, as seen with the icicle (second row) and
the glass (fourth row). For more ambiguous cases, such as
glowing water (first row) or a dandelion being blown (third
row), only the confident regions are labeled, while uncertain
areas are marked as Ignore (yellow). These Ignore Regions
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“the ice 
forming”

“the bright 
blue lights 
moving”

Original GroundTruth

“the glass 
jar breaking 
into pieces”

“the dandelion 
being blown 
away by a 
woman”

“the light 
reflected 

in the water”

Figure B. Samples from our Ref-VPS dataset. Ground-truth masks are shown in pink, and the Ignore regions are shown in yellow. Pixels
inside the Ignore regions are not included in the metric calculation.

2



are excluded from metric computation, ensuring that evalu-
ations focus on reliable mask regions and are not penalized
for inherently ambiguous boundaries.

A.3. Mask annotation accuracy evaluation
To assess the quality of our annotations, we compute inter-
annotator agreement on the Ref-VPS dataset. Specifically,
an independent annotator relabeled a subset of the dataset,
covering all 39 dynamic concepts, using the same annota-
tion protocol. Following the evaluation approach of Benen-
son et al. [2], we report an inter-annotator mean IoU (mIoU)
of 87.1%, significantly higher than the ∼80% agreement
number reported for COCO [4]. This high agreement
demonstrates the effectiveness of our annotation protocol,
particularly the use of Ignore labels to handle ambiguity in
subjective scenarios.

B. Additional Quantitative Evaluations
In this section, we provide additional quantitative evalua-
tions for our proposed REM. Same as our ablation study
in the main paper, we conduct these experiments using the
MS-1.4B version, unless staged otherwise.

B.1. Mask reconstruction accuracy analysis
In designing our REM model, we repurpose a pre-trained
VAE as the mask decoder, based on the intuition that
large-scale pre-training enables the VAE to effectively re-
construct masks as images. To validate this assumption,
we quantitatively evaluate the VAE’s reconstruction perfor-
mance on binary mask images, following the methodology
of Marigold [11]. Specifically, we assess reconstruction ac-
curacy on 3,471 binary masks from the Ref-YTB training
set (one per video). The VAE achieves a mean absolute
error (MAE) of 0.0144 for mask reconstruction. In compar-
ison, reconstructing the corresponding RGB frames yields
a higher MAE of 0.1236, reflecting the greater difficulty of
the RGB task. Furthermore, the VAE attains a mask re-
construction mIoU of 99.33% between the input and out-
put masks. These results support our approach of convert-
ing masks into 3-channel inputs for compatibility with pre-
trained auto-encoders, effectively mitigating concerns about
domain mismatch.

B.2. Failure mode analysis
We conducted a quantitative evaluation of our REM fail-
ure modes on Ref-VPS in Figure C. We measure perfor-
mance degradation across motion and shape changes (fol-
lowing Dave et al. [7]), and prompt complexity (sentence
length). Our analysis reveals that significant shape change
is the primary failure mode, with motion and prompt com-
plexity having secondary impacts. These results further il-
lustrate the challenge of segmenting dynamic concepts in
videos.

Figure C. Quantitative evaluation of our REM (MS-1.4B) failure
modes on Ref-VPS: Significant shape change is the primary fail-
ure mode, with motion and prompt complexity having secondary
impacts.

Method Memory (GB) Speed (FPS)
MUTR 34.1 13.6
UNINEXT 9.7 3.3
VD-IT 72.8 7.1
REM (MS-1.4B) 41.8 7.1

Table B. Inference costs of REM and top RVS methods on Ref-
DAVIS. Both the memory requirements and the runtime of REM
are on par with other models in the literature.

B.3. Computational cost

We report the inference speed and memory consumption of
REM (MS-1.4B) alongside key baselines in Table B, us-
ing their official public implementations. All measurements
are conducted on 32-frame clips from Ref-DAVIS using a
single NVIDIA A100 GPU, with averages computed over
80 runs. As shown, the inference costs of REM align with
those of other state-of-the-art approaches.

For training, REM requires 174 hours on four A100
GPUs. Since most baselines do not disclose training costs,
we estimate them under equivalent hardware and condi-
tions (excluding I/O time), and report the results in Ta-
ble C, including per-GPU memory consumption. Our
training efficiency is on par with prior works. Notably,
UNINEXT, the current state-of-the-art in RVOS, requires
approximately 6.3 times longer to train than REM due to its
reliance on over ten supervised datasets to achieve strong
object segmentation performance. In contrast, REM lever-
ages Internet-scale pre-training to attain comparable perfor-
mance on in-domain benchmarks and significantly outper-
forms UNINEXT in out-of-distribution scenarios, all while
incurring a fraction of the training cost.
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Method Memory (GB) Total Runtime (hr)
MUTR 30.4 134
UNINEXT 30.2 1906
VD-IT 68.5 260
REM (MS-1.4B) 61.8 174

Table C. Training costs of REM and top RVS methods. Our costs
are on par with prior work and are notably significantly lower com-
pared to UNINEXT, the state-of-the-art RVOS approach.

Training stages Training strategy Ref-YTB Ref-VPS
(J&F) J

Two-stages (Ours) Images → Images & Videos 68.4 49.0
Single-stage Images & Videos 66.3 46.33

Table D. Comparison between our default two-stage training and
single-stage training strategy. The two-stage training strategy al-
lows the model to first learn strong spatial representations from
image-only data before incorporating the more complex temporal
dynamics present in videos. Therefore, it achieves better results
for both the standard RVS benchmark and our out-of-distribution
Ref-VPS dataset.

B.4. Ablation of the training strategy

Our model adopts a two-stage training strategy (detailed in
Section D), where we first pre-train on image-only data to
learn spatial representations, followed by joint fine-tuning
on mixed image and video data. In this section, we compare
the two-stage approach to a single-stage alternative and an-
alyze the impact of varying the amount of image data used
in the second stage.

Benefits of two-stage training. As reported in Table D,
the two-stage training strategy yields superior performance
on both the standard RVS benchmark and the out-of-
distribution Ref-VPS dataset. This improvement stems
from allowing the model to first acquire strong spatial priors
from image-only data before incorporating the more com-
plex temporal dynamics of videos. Additionally, initializing
with well-trained spatial weights enhances training stability
and convergence.

Impact of image data used in the second stage. In our
default two-stage setup, we use an equal amount of image
and video data during the second stage. To investigate the
effect of image data volume, we consider two variants: one
with twice as many images and one with no image data.
As shown in Table E, using no image data significantly de-
grades generalization on Ref-VPS, underscoring the impor-
tance of image supervision. Conversely, doubling the image
data leads to performance degradation on both benchmarks,
suggesting that excessive reliance on static visual informa-
tion can hinder the learning of spatiotemporal dynamics.
These results highlight the importance of a balanced inte-
gration of image and video data for effective training.

Images:Videos Ref-YTB Ref-VPS
(J&F) J

2:1 67.0 48.0
1:1 (Ours) 68.4 49.0
No images 68.7 40.7

Table E. Impact of the image data volume used in the second
stage. Incorporating image data in the second stage significantly
enhances the model’s generalization on the Ref-VPS dataset com-
pared to the version trained without images, while using more im-
age data yields suboptimal results. Overall, a balanced integration
of image and video data is key to the success of our approach.

Benchmark SD2.1 VC-1 VC-2 MS-1.4B
Ref-YTB (J&F) 60.2 57.5 64.9 63.5
Ref-VPS (J ) 29.8 28.0 36.8 40.0

Table F. Analysis of the effects of generative pre-training on Ref-
YTB and Ref-VPS. Both large-scale image pre-training as well
as learning to model video-language interactions are important for
robust RVS performance.

B.5. Effect of generative pre-training on RVS

We focus on how generative pre-training affects the RVS
performance in this section. We focus on comparing our
MS-1.4B model variants with other pre-trained diffusion
models of a similar parameter size.

We begin by evaluating the effect of Image generation
pre-training in Table F. As a baseline, we first fine-tune Sta-
ble Diffusion 2.1 [3] (an image generation model, denoted
as SD2.1) on individual frames (column 1 in the table). This
variant has no temporal modeling capacity, but neither does
UNINEXT [23] - the state-of-the-art approach for RVOS.
However, it strongly underperforms compared to our best
video-based variants, not only on Ref-VPS but also on the
object-centric Ref-YTB. This shows that while generative
pre-training relies heavily on images, video data is crucial
for learning effective representations for tracking.

Next, we evaluate two variants of the VideoCrafter
model [5, 6] (denoted as VC-1 and VC-2 in Table F), both
initialized from Stable Diffusion 2.1 [3] and trained on
600M images and 10-20M videos. VC-2 focuses on high-
quality data curation, which has been shown to be impor-
tant for representation learning in the past [9, 18], and leads
to substantial performance gains across both benchmarks.
Finally, the ModelScope [21] approach is also initialized
from Stable Diffusion, but trained on the larger LAION 2B
and a similar amount of high-quality video data (last col-
umn in Table F). It performs comparably to VC2 on Ref-
YTB, while demonstrating the best zero-shot generalization
to Ref-VPS among all the variants, making it our default
representation. These results highlight that large-scale im-
age pre-training, combined with generative video-language
modeling, is important for generalization in RVS.
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Noise Level Ref-YTB (J&F) Ref-YTB (J )
200 59.2 36.2
50 62.9 35.0
0 (Ours) 62.9 40.5

Table G. Ablation study on the choice of the noisy timestep. The
best performance is achieved with minimal noise (t = 0), validat-
ing our design.

Method Ref-VPS Ref-DAVIS
J Temp. Con. J Temp. Con.

MUTR 24.1 2.9 64.8 3.4
UNINEXT 26.3 5.2 68.2 5.2
VD-IT 35.3 4.7 66.2 3.1
REM (MS-1.4B) 49.0 2.8 69.9 2.1

Table H. Temporal Consistency comparison to the state of the
art on Ref-VPS and Ref-DAVIS. Our approach demonstrates the
best temporal consistency on both object-centric and non-object-
centric datasets.

B.6. Ablation study on the noisy timestep
In the main paper, we default to a noise timestep of t = 0,
based on the observation that our task formulation focuses
on direct mask latent prediction rather than denoising. This
design choice eliminates the need for injecting noise into
the latent space. To empirically validate this decision, we
conduct a single-stage training experiment on the Ref-YTB
dataset and report the results in Table G. The findings con-
firm our hypothesis: minimal noise (i.e., t = 0) consistently
leads to the best performance, reinforcing the suitability of
this choice for our predictive framework.

B.7. Temporal consistency evaluation
Evaluating temporal consistency in video segmentation re-
mains a challenging task, as it is difficult to disentangle
variations caused by model inconsistency from those arising
due to genuine object deformations. For example, the tem-
poral consistency metric initially introduced in the DAVIS
dataset [17] was applied only to videos with minimal object
deformation and occlusion, and was eventually deprecated
by the dataset authors due to its limited applicability.

To address these challenges, we adopt a simple yet ef-
fective temporal consistency metric that quantifies frame-
to-frame stability. Specifically, we compute the average dif-
ference in Intersection-over-Union (IoU) between predicted
masks and ground truth masks across consecutive frames.
Formally, the metric is defined as:

Temp. Con. =
1

N

N∑
n=1

[
1

Tn

Tn∑
t=1

(IoUdiff)

]
, (A)

where N is the number of samples and Tn is the number of

VDIT  29.0

UNINEXT  30.2 REM MS-1.4B  37.5

MUTR  27.2

Figure D. Class-wise J scores (mIoU) across 454 object classes
demonstrating concept coverage on BURST. As indicated by the
arrows, REM is more robust on the most challenging categories
compared to other methods.

frames in the nth sample, and

IoUdiff = IoU(Predt+1, GTt+1)− IoU(Predt, GTt).
(B)

Lower values indicate better temporal consistency. How-
ever, it is important to interpret this metric in conjunc-
tion with prediction accuracy, as trivially empty predictions
would yield a perfect consistency score of zero without
meaningful segmentation.

We report both region similarity and temporal consis-
tency on Ref-VPS and Ref-DAVIS (both sampled at 24 fps)
in Table H. REM achieves the best temporal consistency
on both object-centric and non-object-centric datasets. In-
terestingly, while MUTR also attains a strong consistency
score on Ref-VPS, this is primarily due to its frequent out-
put of empty masks, as reflected in its low region similarity.
Conversely, UNINEXT, despite being the state-of-the-art on
traditional RVOS benchmarks, shows the poorest temporal
stability across both datasets.

B.8. Concept coverage plot on BURST dataset
Figure D presents the concept coverage plots on the
BURST [1] dataset for VD-IT [27], MUTR [25],
UNINEXT [23], and our method. As shown, REM con-
sistently outperforms the baselines on the most challeng-
ing categories, further highlighting its strong generalization
ability across a diverse range of visual concepts.

B.9. Additional evaluation on MeViS

Data efficiency. We first provide the data source for all
the baseline models we compared in Table I. Our REM
(Wan-14B) reaches a new state of the art on MeViS while
relying on orders of magnitude fewer pixel-level annota-
tions than prior work. In particular, the strongest baseline,
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Method Mask annotation MeViS
J&F J F

Referformer [22] MeViS 31.0 29.8 32.2
VISA-13B [24] Ref-COCO/+/g, Ref-YTB, MeViS, Ref-DAVIS, ReVOS, LVVIS, Refclef, ADE20k 44.5 41.8 47.1
DsHmp [10] MeViS 46.4 43.0 49.8
GLUS [13] Ref-YTB, MeViS, Ref-DAVIS, ReVOS, LVVIS 51.3 48.5 54.2
REM (Wan-14B) MeViS 57.6 54.3 60.9
REM (Wan-14B) Ref-COCO/+/g, Ref-YTB, MeViS 60.3 57.2 63.4

Table I. Comparison to the state of the art on the MeViS benchmark with a comprehensive list of mask annotations used in training. Our
REM (Wan-14B) reaches a new state of the art on MeViS while relying on orders of magnitude fewer pixel-level annotations than prior
work.

GLUS, couples a large-scale multimodal LLM with SAM2
masks and aggregates supervision from at least six video-
and image-level datasets. In contrast, the full version of
REM is fine-tuned on just three datasets, yet it improves
the previous best J&F from 51.3% to 60.3%. These re-
sults underline that preserving the generative architecture
of a diffusion model transfers rich visual–language priors
so effectively that only a modest amount of task-specific
data is needed to surpass far heavier-supervised baselines.
Single-dataset training. To isolate the contribution of our
training protocol, we additionally built a variant of our Wan
model by finetuning on the MeViS training set alone. Per-
formance decreases by only 2.7 in terms of J&F , yet it still
outperforms the strongest published baseline by 6.3 points.
This resilience demonstrates that our mixed training strat-
egy endows the model with robust spatial–temporal repre-
sentations that generalize even when the downstream super-
vision is extremely limited. We include the training details
for our Wan variant in Section D.

C. Additional Qualitative Evaluations
C.1. Failure cases visualizations
A few representative failure cases of REM (MS-1.4B) on
Ref-VPS are shown in Figure E. Our method suffers from
object-centric bias in the most challenging scenarios (e.g.,
light reflection and veins) and struggles with extremely fast
motion (e.g., the lightning strike).

C.2. Evaluation on challenging fight scenes
Fight sequences in movies and animated shows present a
particularly challenging setting for referring video segmen-
tation. These scenes are often characterized by severe and
frequent occlusions, objects or characters exiting the frame,
and rapid camera pose changes. Such factors cause drastic
variations in appearance, demanding high temporal and se-
mantic consistency to accurately track, re-identify, and seg-
ment the referred entities.

Our REM excels in this domain of extremely challeng-
ing samples as illustrated in Figure F. In contrast, both
UNINEXT and VD-IT exhibit clear failure cases when the

“the light reflecting off the bald head” “the light reflected in the water”

“the lightning strike” “the veins on the arm”

Figure E. Failure cases of REM (MS-1.4B) on Ref-VPS. Our
model still exhibits some object-centric bias and struggles with
extremely dynamic entities such as lightning.

referred entity undergoes large occlusions or momentarily
disappears from view. Notably, despite utilizing a video
diffusion backbone, VD-IT fails to fully exploit the tempo-
ral consistency learned during video diffusion pre-training,
whereas REM maintains robust performance under these
challenging conditions.

C.3. Comparisons on ambiguous or overlapping
scenarios

To assess how well our method handles visually ambiguous
or overlapping scenarios, we present a qualitative compar-
ison between REM and VD-IT, the strongest baseline on
this benchmark, in Figure G. While many of these exam-
ples lack a single ground-truth segmentation, REM consis-
tently produces more accurate and coherent masks in the
confidently visible regions. For instance, in the first row,
our method accurately segments only the clearly visible
portions of lava that become apparent after being struck
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UNINEXT

Ours

“the man without a shirt”

“the boy wearing blue shirt”

“the man with red cape”

“the man with white hair”

VD-IT

“the man with white hair”

UNINEXT

Ours

VD-IT

UNINEXT

Ours

VD-IT

“the boy with dark hair”

“the man in red and gold suit”“the boy with red collar and pink hair”

UNINEXT

Ours

VD-IT

Figure F. Qualitative comparison of REM (MS-1.4B) with state-of-the-art baselines on dynamic and challenging fight scenes. The incor-
rectly segmented frames are outlined in red. REM outperforms the other methods in handling frequent occlusions and POV changes. For
a better illustration of the differences, please watch the full videos here.
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“the luminescence in the water”

“the smoke blown out”

“the lava flowing” VDIT REM (Ours)

REM (Ours)

REM (Ours)

VDIT

VDIT

Figure G. Comparison on ambiguous or overlapping scenarios in
Ref-VPS between VD-IT and REM (MS-1.4B). While no single
perfect prediction exists for these samples, our method is both
more precise and more consistent.

Benchmark Type Training Samples Testing Samples
Ref-COCO [26] Image 320K -
Ref-YTB [19] Video 12,913 2,096
MeViS [8] Video 1,712 140
Ref-DAVIS [12] Video - 90
BURST [1] Video - 2,049
VSPW [15] Video - 343

Table J. Details about the benchmarks we used for training and
evaluation.

by a wave, whereas VD-IT incorrectly includes the entire
wave. In the second row, REM reliably segments all re-
gions of glowing water, while VD-IT detects only a few
scattered patches. These results demonstrate our model’s
robustness in ambiguous settings and its capacity to avoid
over-segmentation.

D. Implementation Details

Benchmark details and baseline models We report the de-
tails about the benchmarks we used in Table J. We quote the
results of all the baseline models on Ref-YTB, Ref-DAVIS,
and MeViS from their original papers. For the zero-shot
evaluation of BURST, VSPW, and Ref-VPS, we report the
numbers by running the official checkpoints of MUTR1,
UNINEXT2, VD-IT3, and GLUS4.
Training details. Our approach builds upon two state-
of-the-art text-to-video diffusion architectures: Mod-

1https://github.com/OpenGVLab/MUTR
2https://github.com/MasterBin-IIAU/UNINEXT
3https://github.com/buxiangzhiren/VD-IT
4https://github.com/GLUS-video/GLUS

elScope [21] and Wan [20]. Additional video diffusion
backbones are evaluated in Section B. ModelScope com-
prises 1.4 billion parameters and extends Stable Diffu-
sion [3] with temporal modules. We adopt a two-stage
training protocol following Zhu et al. [27]: in Stage I, we
fine-tune only the spatial weights on Ref-COCO image-
text pairs[26] for one epoch; in Stage II, we fine-tune all
network weights for 40 epochs using Ref-YTB video–text
examples [19] supplemented with 12K Ref-COCO images
converted into pseudo-videos following Wu et al. [22]. By
contrast, Wan employs a unified diffusion transformer that
jointly models spatial and temporal information, without
dedicated temporal modules [16]. Accordingly, we train
this variant in a single stage on the combined Ref-COCO
and Ref-YTB datasets for 80k steps, with half of the steps
trained with images and half trained with videos. Through-
out training, the text encoder and VAE remain frozen.

Unless otherwise stated, all models are trained and eval-
uated at a resolution of 512 × 512. We use AdamW [14]
for optimization with a constant learning rate of 1e-6. The
training batch size is 4 for ModelScope and 8 for Wan, and
for each sample, we randomly load an 8-frame video clip for
ModelScope and a 17-frame video clip for Wan. We train
our model using eight NVIDIA 80GB A100 GPUs, and it
takes about 1 week to finish the whole training process.

For MeViS, we train our MS-1.4B variant by finetuning
our Stage I checkpoint jointly on MeViS and Ref-YTB for
37 epochs. We achieve our best results on MeViS by fine-
tuning the Wan-14B checkpoint trained on Ref-COCO and
Ref-YTB, for an additional 8 epochs on MeViS.
Evaluation details. We follow the standard evalua-
tion protocol for Ref-YTB, Ref-DAVIS, and MeViS. For
BURST [1] and VSPW [15], neither of them contains re-
ferring text for the segmented entities. We automatically
generate referring expressions using only the category in-
formation of the mask entity as “the <class>” (e.g., the
hat). For VSPW, we conduct our evaluation on the vali-
dation set, which has 66 different stuff categories. In the
case of BURST, we evaluate the combined validation and
test set, which contains 454 classes and a total of 2,049 se-
quences. For inference and evaluation, we follow the stan-
dard VSPW protocol for our RVS evaluation. For BURST,
we predict masks for all the original frames, and compute
the metrics for the annotated ones provided by the dataset.
For Ref-VPS, to ensure high-quality performances, we per-
form inference at the original 24 FPS and compute evalua-
tion metrics on the annotated frames at 6 FPS.
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