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Supplementary Material

A. Introduction of the Base Text-to-Video Gen-
eration Model

We use a transformer-based latent diffusion model [37] as
the base T2V generation model, as illustrated in Fig. 7. We
employ a 3D-VAE to transform videos from the pixel space
to a latent space, upon which we construct a transformer-
based video diffusion model. Unlike previous models that
rely on UNets or transformers, which typically incorporate
an additional 1D temporal attention module for video gen-
eration, such spatially-temporally separated designs do not
yield optimal results. We replace the 1D temporal attention
with 3D self-attention, enabling the model to effectively
perceive and process spatiotemporal tokens, thereby achiev-
ing a high-quality and coherent video generation model.
Specifically, before each attention or feed-forward network
(FFN) module, we map the timestep to a scale, thereby ap-
plying RMSNorm to the spatiotemporal tokens.

B. Details of Data Construction
In this section, we provide a detailed description of the ren-
dered dataset used to train ReCamMaster.

3D Environments We collect 40 different 3D environ-
ments assets from https://www.fab.com/. To mini-
mize the domain gap between rendered data and real-world
videos, we primarily select visually realistic 3D scenes,
while choosing a few stylized or surreal 3D scenes as a sup-
plement. To ensure data diversity, the selected scenes cover
a variety of indoor and outdoor settings, such as city streets,
shopping malls, cafes, office rooms, and the countryside.

Characters We collected 70 different human 3D mod-
els as characters from https://www.fab.com/ and
https://www.mixamo.com/#/, including realistic,
anime, and game-style characters.

Animations We collected approximately 100 differ-
ent animations from https://www.fab.com/ and
https://www.mixamo.com/#/, including common
actions such as waving, dancing, and cheering. We used
these animations to drive the collected characters and cre-
ated diverse datasets through various combinations.

Camera Trajectories Due to the wide variety of camera
movements, amplitudes, shooting angles, and camera pa-
rameters in real-world videos, we need to create as diverse
camera trajectories and parameters as possible to cover var-
ious situations. To achieve this, we designed some rules to
batch-generate random camera starting positions and move-
ment trajectories:

1. Camera Starting Position.
We take the character’s position as the center of a hemi-

sphere with a radius of 10m and randomly sample within
this range as the camera’s starting point, ensuring the clos-
est distance to the character is greater than 0.5m and the
pitch angle is within 45 degrees.

2. Camera Trajectories.

• Pan & Tilt: The camera rotation angles are randomly
selected within the range, with pan angles ranging from 5
to 60 degrees and tilt angles ranging from 5 to 45 degrees,
with directions randomly chosen left/right or up/down.

• Basic Translation: The camera translates along the pos-
itive and negative directions of the xyz axes, with move-
ment distances randomly selected within the range of
[ 14 , 1]→ distance2character.

• Basic Arc Trajectory: The camera moves along an arc,
with rotation angles randomly selected within the range
of 5 to 60 degrees.

• Random Trajectories: 1-3 points are sampled in space,
and the camera moves from the initial position through
these points as the movement trajectory, with the total
movement distance randomly selected within the range
of [ 14 , 1] → distance2character. The polyline is smoothed
to make the movement more natural.

• Static Camera: The camera does not translate or rotate
during shooting, maintaining a fixed position.

3. Camera Movement Speed.
To further enhance the richness of trajectories and im-

prove our model’s generalization ability, 50% of the train-
ing data uses constant-speed camera trajectories, while the
other 50% uses variable-speed trajectories generated by
nonlinear functions. Consider a camera trajectory with a
total of f frames, starting at location Lstart and ending at
position Lend. The location at the i-th frame is given by:

Li = Lstart + (Lend ↑ Lstart) ·
(
1↑ exp(↑a · i/f)

1↑ exp(↑a)

)
,

(10)
where a is an adjustable parameter to control the trajectory
speed. When a > 0, the trajectory starts fast and then
slows down; when a < 0, the trajectory starts slow and
then speeds up. The larger the absolute value of a, the more
drastic the change.

4. Camera Parameters.
We chose two sets of commonly used camera param-

eters: focal=35mm, aperture=2.8, and focal=24mm, aper-
ture=10.

https://www.fab.com/
https://www.fab.com/
https://www.mixamo.com/#/
https://www.fab.com/
https://www.mixamo.com/#/


Figure 7. Overview of the base text-to-video generation model.

Figure 8. Rendered multi-camera synchronized dataset.

Table 5. Ablation study on training data construction.

Dataset

Visual Quality Camera Accuracy View Synchronization

FID ↓ FVD ↓ CLIP-T ↔ CLIP-F ↔ RotErr ↓ TransErr ↓ Mat. Pix.(K) ↔ FVD-V ↓ CLIP-V ↔
Toy Data 69.35 179.22 34.28 98.77 1.98 5.24 862.59 89.58 89.70
High-Quality Data 57.10 122.74 34.53 98.74 1.22 4.85 906.03 90.38 90.36
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A	couple	is	dancing	in	a	luxurious	ballroom	filled	with	elegantly	dressed	guests.

Figure 9. Unify camera-controlled tasks with ReCamMaster. Re-
CamMaster supports T2V, I2V, and V2V camera-controlled gen-
eration.

C. More Results

C.1. Ablation on Dataset Construction

In our experiments, we find that constructing a diverse
training dataset that closely resembles the distribution of
real-world videos significantly enhances the model’s gen-
eralization ability. To demonstrate this, we quantitatively
compared the model performance trained on the “toy data”
constructed in the early stages of the experiment and the
“high-quality data” used in this paper. Specifically, the “toy
data” was constructed with 500 scenes in a single 3D en-
vironment, and we manually created 20 camera trajecto-
ries assigned to 5000 cameras. As a result, this dataset
lacked diversity in terms of scenes and camera trajectories,
which limited the model’s generalization ability on in-the-
wild videos and novel camera trajectories. In contrast, the
“high-quality data” used in the paper contains 136K videos
shot from 13.6K different dynamic scenes in 40 3D environ-
ments with 122K different camera trajectories. We present
the results in Tab. 5. It is observed that the model shows sig-
nificant improvements in visual quality, camera accuracy,
and synchronization metrics.

C.2. More Results of ReCamMaster

More synthesized results of ReCamMaster are presented in
Fig. 12. Please visit our project page for more results. We
also showcase the ability of ReCamMaster to support T2V,
I2V, V2V camera-controlled tasks in Fig. 9.

C.3. More Comparison with SOTA Methods

Please refer to Fig. 13 for qualitative comparison with the
state-of-the-art methods.
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Figure 10. Results on non-overlapping first frames.
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Figure 11. Visualization of failure cases.

C.4. Results on Non-overlapping First Frames
In the main text, we assume that the first frame of the
generated video coincides with the first frame of the input
video when testing ReCamMaster. This means the gener-
ated video starts from the original video’s first frame. To
evaluate the method’s generalizability, we also rendered
27K ‘non-overlapping first-frame’ videos as training data
and tested whether the generated first frame could differ
from the original. Fig. 10 presents the qualitative results,
with the leftmost column showing the first frame. It is evi-
dent that the model generalizes well to non-overlapping first
frames, enabling re-filming from a completely new perspec-
tive, thus demonstrating the method’s generalizability.

C.5. Failure Cases Visualization
We present the failure cases in Fig. 11. Since our model is
built upon a text-to-video base model, we also inherit some
of the base model’s shortcomings. For instance, the gen-
erated hand movements of characters may exhibit inferior
quality, as shown in the first and second rows. Moreover,
generating very small objects sometimes results in failures,
as shown in the third and fourth rows.

https://jianhongbai.github.io/ReCamMaster/
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Figure 12. More synthesized results of ReCamMaster.
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Two	men	are	engaged	in	a	tense	and	focused	activity	in	a	dimly	lit	room	with	a	long	hallway. A	man	in	a	black	suit	and	a	green	shirt	is	standing	in	a	kitchen,	engaging	in	a	conversation.

Figure 13. More comparison with state-of-the-art methods.


