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Figure S1. Controllability of Diffusion Models Through Text
Prompts. Each is an output image of diffusion generated with the
following prompt: (a) “A table with a teacup on top.” (b) Adding
“White background.” to the end of the prompt. (c) Specifying the
shape and texture of the table as “four-legged rectangular marble
table.” (d) Specifying the camera view via “, from a diagonal angle.”

A. Details on Dataset Generation

Text Prompts for Image Generation. The controllability of
diffusion via text prompts offers advantages in learning OOR
from synthetic images over real-world images by generat-
ing realistic OOR images while simultaneously enhancing
their learnability through precise control. Fig. S1 illustrates
this clearly. (a) shows an image generated with a simple
prompt: “A table with a teacup on top.” While the image
is highly realistic, it poses challenges for learning the OOR
between the “table” and “teacup” because the full shape
of the table is not visible. (b) shows the result of adding
“White background.” to the end of the prompt, which directs
focus to the two objects and ensures that their full shapes
are captured within the image frame without the need for
additional context. (c) demonstrates control over the object’s
shape and texture in the generated image. This facilitates the
registration of template object meshes. Finally, (d) shows
how to mitigate frame size constraints by controlling the
camera view. This is useful for capturing OOR between ob-
jects with large size differences, such as a table and a teacup,
or between objects positioned at some distance, such as a
monitor and a keyboard. We use the FLUX.1-dev [1] in all
image generation.
Synthetic Image Augmentation via Video Diffusion. We
further augment 2D OOR images using the I2V model [11]
for contexts where dynamic OOR can be generated by hu-
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Figure S2. Image Augmentation via Image-to-Video Model. We
diversify scenes with dynamic object-object spatial relationships
using the image-to-video model.

mans. The motivation for using the image-to-video model is
to generate a broader range of relative object relationships
within each context, as image diffusion models typically pro-
duce the most representative configuration (e.g., the pizza
cutter tends to be in the center of a pizza). We then use each
frame from the synthesized videos as additional synthetic
2D samples, disregarding their temporal information. See
Fig. S2 for the example result.
Best Template Selection. If the shape of the object in the
synthetic image and the template mesh are very different,
mesh registration often fails. Therefore, for each category,
we collect several template meshes as candidates and select
the template that best matches the object in the image. To
do this, we obtain DINO [2, 7] features for M pseudo multi-
view images and N mesh multi-view renderings, and select
the mesh with the highest value by calculating the average
of cosine similarity for N ×M pairs. We collect template
meshes from Sketchfab [9]. There are 96 template meshes
used for data generation.
Filtering Process. Our filtering process is automated in the
following steps: First, we filter out all the bad quality images
where segmentation and SfM fail. In the process from SfM
to feature matching, we filter out if the number of points
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corresponding to each base object and target object is less
than 100. The cosine similarity threshold is set to 0.7 in
most cases. There may still be misalignment between the
registered mesh and the point clouds. We use the Chamfer
Distance from the mesh to the point clouds. The threshold
is adjusted according to the scale of the registered mesh.
Most of the bad samples are filtered out through a series
of processes, but some cases, such as flipped meshes, may
remain. We use VLM [6] to filter out the last remaining
bad samples. Specifically, we render combinations of base
and target objects, and then ask VLM to judge whether the
multi-view images align well with the text prompt, using
the same criteria as when measuring the VLM score. The
filtering ratio is 0.58 to 0.92. However, since our approach
is based on fully synthetic data, we can iterate this process
as needed to obtain a sufficient number of high-quality 3D
outputs. We obtain 30 to 216 samples per context.

B. Details on OOR Diffusion.
Our OOR diffusion is trained for 20,000 epochs, taking about
10 hours on an RTX 6000 48GB.
Architecture Implementation. We follow the implementa-
tion of ScoreNet in GenPose [14] for our score-based OOR
diffusion. However, we take text as a condition instead of
point clouds. For this, we introduce the T5 text encoder [8].
Also, unlike Genpose, which only deals with the scores of
rotation, translation, we also consider the 3-dimensional
scale. For this, in the inference reverse ODE process, we add
guidance to make the scale positive. Following GenPose, we
consider a 6D representation [15] for rotation. Therefore,
our OOR diffusion is learned in a 15-dimensional space (6D
target object rotation, 3D target object translation, 3D target
object scale, 3D base object scale).
Text Context Augmentation. As proposed in Sec. 3, we
perform text context augmentation to increase the generality
of OOR diffusion. Through the guided prompts in Fig. S3,
LLM generates various text prompts that describe a given
context c. Object categories are augmented by asking the
LLM to present categories with similar shape and scale that
could replace B and T in the given text context c.
Inconsistency Loss. The inconsistency loss introduced in
Sec. 3.3 is computed as the average of the following three
inconsistency parts: (1) The scale variance of a global base
object; (2) The pose and scale variance in the global coordi-
nate system derived from different parents; (3) The variance
of each component’s ratio between the scale in the global
coordinate system and the base scale in pairwise OOR, mea-
sured for parent nodes that are not global bases. Specifically,
(1) corresponds to the part related to the desk in Fig. 5. OOR
diffusion generates different sB for each pair, (desk, moni-
tor), (desk, keyboard), and (desk, mouse), within the batch.
In this case, (1) takes the variance of three sB as a loss term.
(2) is the part corresponding to the keyboard in Fig. 5. The

Provide {N} English prompts in a single-line list format that describe the situation of "{prompt}". Follow 
these steps sequentially to complete the task:



Step 1



Carefully check the following conditions:

1) Each sentence must start with "A", "An", or "The".



2) Each sentence must include both objects: a {obj1} and a {obj2}.



3) Either object can be the subject of the sentence (each can be the subject individually, or both can be the 
subject together).



4) Include a variety of sentence structures, such as active voice, passive voice, and noun phrases(e.g., 'A 
baseball bat hitting a baseball.').



5) Do not include any objects other than the main two ({obj1}, {obj2}). Keep the sentences simple and 
avoid unnecessary embellishments.



6) If there are verbs that describe the same situation, use different words instead of using the same word in 
every sentence (increase variety). However, you must not force the use of words just to increase diversity. 
Choose words that are appropriate for the given situation of "{prompt}".




Step 2

After creating each sentence, carefully check whether it meets all the conditions. If any sentence does not 
satisfy the conditions, rewrite it.




Step 3

Once all {N} sentences are created, output them in a single-line list format.

Figure S3. Guided Text prompt Provided to LLM for Text
Context Augmentation. LLM augments on text context c via the
following guided prompt.

pose and scale of each object in the global coordinate system
are obtained as many times as the number of parent nodes of
the corresponding node in the scene graph. Thus, the vari-
ance of three different poses and scales in global coordinate
systems of the keyboard obtained from the desk, monitor,
and mouse is the loss term in (2). (3) relates to the scale
ratio consistency of monitor and mouse, which are parent
nodes but not the global base. For example, the monitor
should maintain consistency between its scale in the global
coordinate system obtained from paths in the scene graph
and the sB of the (monitor, keyboard) OOR sample. They
do not have to be equal, but the ratio of each component
should be constant. For example, if the obtained monitor
scale in the global coordinate system is (0.5, 0.4, 0.2), then
the sB in the (monitor, keyboard) OOR sample should be
(1.0, 0.8, 0.4). The variance of the ratio of each component
of the relevant scales is the loss term in (3).

C. Experiments Details

Baseline Methods Details for Pairwise OOR Generation.
SceneMotifCoder (SMC) [10] is an example-driven visual
program learning method. It takes text prompts as input and
produces 3D object alignments by selecting and arranging
meshes from a mesh pool. Given an example of a GT text
prompt and mesh alignments in training, SMC analyzes
patterns within the input, generates programs, and updates
the program when new examples are introduced. During
the inference process, when an input text comes in, LLM
maps it to an appropriate task, and the program produces
3D object arrangements with the retrieved meshes from the
candidate mesh pool. We convert our template mesh pairs



User Study: Evaluating Object-Object Relationships in Images

In this study, you will be presented with 30 questions, each featuring three sets of 
multi-view images. Your task is to select the set of multi-view images that best 
depicts the object-object spatial relationship described by the given text 
prompt. Please focus solely on the spatial and relational aspects of the objects as 
described in the text prompt, and do not consider other image qualities such as 
texture or artistic details. Your responses will help us better understand how well 
these relationships are conveyed visually.  

This study should take approximately 5 minutes... (text omitted)

�� Which set of multi-view images best illustrates the object-object 
relationship described in the following text prompt: "A knife cuts an 
apple"? 
Please select the set that most accurately represents the spatial and relational 
aspects as described.



1) multi-view images generated by method A

2) multi-view images generated by method B

3) multi-view images generated by method C

Figure S4. Questionnaire for User Study. Participants select the
multi-view image set that best captures the given OOR as instructed
in the questionnaire.

obtained in the dataset generation process (Sec. 3.2) into
the SMC format. Since SMC is not concerned about the
relative scale between objects, we use meshes with scales in
our OOR dataset as a mesh pool during inference.

SceneTeller [5] leverages LLMs for in-context learning by
providing the LLM with pairs of (GT text prompt, GT scene
layout), enabling it to generate the appropriate scene layout
for a test prompt. However, existing methods only focus
on the layout for placement on the plane. To generate (GT
text prompt, GT OOR) pairs, we instruct the LLM with our
world coordinate system and object canonical space. Then,
we provide the GT OORs for generating corresponding text
prompts. It also allows LLM to generate additional prompts
for inference based on the generated GT prompts. For ro-
tation, Euler angles format is chosen as the representation
because LLMs tend to generate incomplete SO(3) matrices.
VLM Score. As described in Sec. 4, we propose the VLM
score, inspired by GPTEval3D [12], to evaluate the align-
ment between the text context of OOR and multi-view im-
ages. We use VLM (specifically GPT-4o [6]) to compare
two sets of multi-view images, each containing 10 images.
These image sets are generated using our method or base-
lines. VLM is tasked with selecting the image set that better
represents the spatial relationship between objects described
in the text prompt. To ensure a fair comparison, we instruct
VLM to ignore texture quality and focus solely on OOR.
Fig. S6 illustrates the guided prompt we provided to VLM
along with an example response from VLM.
User Study. For the user study, we randomly select one
scene from each of the object pairs per method to create a
total of 30 questions for pairwise OOR generation. Similar
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Figure S5. Ablation Study for Data Generation. We show
that applying PCA to features of points and separating the base
object and target object through segmentation for matching in better
results.

Methods
Fréchet distance (FD) ↓

PCA Segmentation
✓ 1.87

✓ 1.50
✓ ✓ 1.43

Table S1. Ablation Study for Data Generation. We demonstrate
the superiority of our data generation method through an ablation
study. We compare the similarity between real data’s OOR distribu-
tions and synthetic OOR distributions produced by our approach.

to the VLM score evaluation, participants are instructed to
disregard factors such as texture quality and focus solely on
the OOR. For each question, multi-view image sets generated
by methods A, B, and C are presented, and participants are
asked to select the method that best represents the OOR
described in the text prompt. To prevent bias, the order of
A, B, and C is randomized for each question. We collect
responses from 92 participants in total(81 participants for
multi-OOR evaluation). The detailed questionnaire structure
is illustrated in Fig. S4.

D. Ablation Study

We compare our OOR distribution to the real data distribu-
tion and perform an ablation study to provide further justifi-
cation for our OOR data generation pipeline.
Dataset. We use the ParaHome DB [4], which captures
dynamic 3D movements of humans and objects in a home
environment. We extract three OOR distributions: (‘cutter
board’, ‘knife’), (‘teacup, ‘teapot’), and (‘pan’, ‘salt shaker’).
To exclude the approach and departure of humans relative
to an object, we use the middle 70% of sequences. Since
there is only one instance for each category, the scale is
constant. Therefore, we construct a joint distribution for
(RT →B, tT →B).
Baseline Methods. We ablate our mesh registration pipeline
in Sec. 3.2 by removing point cloud separation and PCA on
semantic features (SD+DINO [13]), comparing them with
our full pipeline.
Metric. We use the Fréchet distance (FD) [3] to measure
distribution similarity. When two distributions p and q are
approximated by a multivariate Gaussian, the FD score d of



System Prompt

User Prompt

Example Response

You are an evaluator who examines multi-view images and determines whether they align well with the text prompt.

You are tasked with reviewing and evaluating multi-view images generated from a text prompt describing the relationship between two objects, '{object_tuple[0]}' 
and '{object_tuple[1]}'.

Prompt: '{prompt}



There are a total of 20 images provided. The first 10 images are multi-view images generated using Method A, while the next 10 images are generated using Method 
B. 



You are to carefully review and determine which method better satisfies the following criteria:

1. Both objects, '{object_tuple[0]}' and '{object_tuple[1]}', should be present in 3D space. Because these are multi-view images, there may be occlusions in some 
views. You need to think in 3D space, combining multi-view images rather than just looking at one image at a time.

2. The spatial relationship between the two objects, as described in the text prompt, should be clearly represented in the multi-view images.

3. The texture of the images or the geometry of each object is not a consideration. As long as the objects are recognizable, you can ignore texture and geometry. 
Focus solely on the object-to-object relationship.



Once again, the first 10 images are generated using method A, the next 10 images are generated using method B.

The text prompt specifies the relationship between the two objects '{object_tuple[0]}' and '{object_tuple[1]}':

'{prompt}'



Indicate which method better satisfies the criteria above and provide a brief explanation for your choice. 



Please make your choice clear by including the phrase 'Choose: Method _' at the end. \nMultiple selection is not allowed. However, if it is difficult to determine 
which is the best, do not choose anything and just print the word 'Cannot choose'.

To evaluate which method better satisfies the criteria, let's analyze the images:



Method A:  

All images clearly show both the apple and the knife. The knife is consistently shown cutting into the apple, accurately representing the spatial relationship described 
in the prompt.



Method B: 

All images include both the apple and the knife. However, the knife is not consistently shown cutting the apple. In some images, the knife is merely near the apple 
without cutting it. Based on the criteria, Method A better satisfies the requirement of depicting the knife cutting the apple.



Choose: Method A

Figure S6. Guided Prompt Provided to VLM for VLM Score Evaluation. Using the guided prompt above, VLM selects the preferred
multi-view image set between the two generated by the different methods.

the two distributions is given by:

d2 = ∥µp − µq∥2 + tr
(
Σp +Σq − 2 (ΣpΣq)

1/2
)
, (1)

where µp is mean of p, µq is mean of q, Σp is covariance
matrix of p, and Σq is covariance matrix of q. Since rotation
and translation have different units in each context, we train
a 3-layer MLP encoder-decoder on 50M randomly sampled
rotation matrix and translation vector. Then we compute FD
in the learned 128D feature space.

Results. Tab. S1 shows that our method produces closer
OOR distributions to real data than baselines, validating our
full pipeline. Fig. S5 further demonstrates the advantage
of our segmentation and PCA modules. Without segmenta-
tion, registration often misaligns objects, and PCA enhances
accuracy, yielding more realistic OOR samples.

“A knife slices bread.”

“A plunger unclogs a toilet.”

“A pen writes on a notebook.”

“A boxing glove punches a punching bag.” “A broom sweeps dust into a dustpan.”

“A hammer hits a nail.”

Figure S7. Applying Our OOR Diffusion Samples to Unseen
Instances. Our OOR diffusion still works when applied to instances
other than the template meshes used to generate the dataset.

E. Generality of Our methods
Generality for Unseen Mesh Instances. Fig. S7 demon-
strates the generality of our OOR modeling for unseen mesh
instances. Our OOR diffusion generates appropriate relative
poses and scales even for instances other than the template
meshes used to generate the dataset. We consider the follow-



“A moka pot pours coffee into a mug.” “A knife cuts a steak.” “A cutting board is on a table.”

“An apple is on a cutting board.”

Figure S8. Our OOR Diffusion Sampling Results Under Unseen
Text Prompt Condition. Our OOR diffusion also works on text
prompts that are not explicitly seen in training (including new
categories and spatial relations).
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Figure S9. Scene Editing Results on TRUMANS, OAKINK2
and OmniObject3D. Our scene editing algorithm works on a
variety of real and synthetic datasets.

ing scales to maintain the aspect ratio of each instance for
both the base object and the target object:

s′ := Mean(s/BBOX(M)) · BBOX(M), (2)

where s is 3-dimensional scale from OOR diffusion, and M
is an instance mesh.
Generality for Unseen Text Inputs. Fig. S8 shows that
our OOR diffusion still produces plausible outputs even
for text prompts that are not seen during training. In the
first example, the spatial relation “pour” is learned, but the
object categories “moka pot” and “mug” are not seen during
training. In the second example, both “steak” and “knife” are
categories seen during training, but the spatial relationship of
“cutting steak with a knife” is not learned. The last example
shows a case of multi-object OOR. The spatial relation of
placing a “cutting board” somewhere is not seen during
training, but thanks to the generality of OOR diffusion, it is
correctly placed on the “table”.
Generality for 3D Scene Editing. Since our OOR can be
applied regardless of objects’ textures or shape details, the
synthetic-to-real gap is minimal. Fig. S9 demonstrates the
effectiveness of our scene editing algorithm on additional
datasets which are TRUMANS, OAKINK2, and OmniOb-
ject3D, yielding convincing results.
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