Supplementary for DCT-Shield: A Robust Frequency Domain Defense against
Malicious Image Editing

A. DCT-Shield Algorithm

Algorithm 1: Frequency Domain Noise Optimiza-
tion for Image Immunization
Input: Input image x, VAE encoder &, JPEG
quality Qq14, coefficient perturbation budget
€, list of channels to perturb
C € {Y,Cb, Cr}, step size v, number of
optimization steps N, mask M
Output: Immunized image x
1 Initialize § < 0
/+ a has 3 components Y, Cb, Cr «/
2 < JPEGE(X, Qalg)
3 if M # () then
L M + component_wise_masks(M)

fori =070 N —1do
n« (1—i/N)y
for c € C do
L alc — o+ 0,
9 | x + JPEGp(a';Quy)
| L(8) Hf,’(x/)HQ
1 0« 6 —sign(VL) -
12 0 + clamp(d, —e, +e)
13 | if M # () then
14 | 6 6. O M.

£

DCT-Shield defends against adversarial attacks by in-
troducing subtle, imperceptible noise in the frequency do-
main, modifying the Discrete Cosine Transform (DCT) co-
efficients of an image. Our approach leverages the JPEG
pipeline to add quantization-aware noise, ensuring strong
protection even against JPEG-based purification methods.
Algorithm | outlines the complete approach.

B. Dataset

For the instruction-based editing task, we use the OmniEdit
test set, which consists of 700 images. From this set, we
select 150 high-quality images where the editing model, In-

structPix2Pix, produces reliable outputs. Our algorithm is
then applied to these selected images to generate protected
versions. We subsequently perform edits on the protected
images and compare the results with the edits of unprotected
(clean) images to assess the impact of our approach.

Additionally, we evaluate our method on the inpainting
task. To support this, we create a dataset of 56 images,
combining samples from the PPR10k dataset with images
collected from the web. PPRI10k is a high-quality por-
trait dataset that provides human-region masks. The web-
crawled images includes a diverse mix of popular celebrity
photos and pet photos. For these, we generate segmentation
masks using SAM [4]. Each image in the inpainting dataset
is manually annotated with three suitable edit prompts. Ex-
amples of images and their corresponding masks are shown
in Figure 1.

C. Evaluation Details

To assess the effectiveness of our image protection method,
we employ a combination of quantitative metrics and hu-
man evaluations. The quantitative metrics evaluate image
fidelity and robustness, while human evaluations provide
qualitative insights into the effectiveness of the protection
against malicious modifications. Below, we detail the eval-
uation methodologies used in our study.

C.1. Quantitative Metrics

C.1.1. Frechet Inception Distance (FID)

FID [2] measures the distributional difference between real
and generated images based on activations from a pre-
trained Inception network. We utilize FID to measure the
distributional difference between the clean edits and pro-
tected edits. It is defined as

FID = [l — g+ Tr (3 + 3 = 2(3:2) %) . ()

where pi,., 3, and pg4, X4 are the mean and covariance of
the real and generated feature distributions.



Figure 1. Images and masks from the curated inpainting dataset.

C.1.2. Structural Similarity Index Measure (SSIM)

SSIM [7] evaluates the perceptual similarity between two
images x and y based on luminance, contrast, and structure:
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where, fiz, 11, are the mean intensities of images x and y
and 02,0, are their variances. C) and C; are stabilizing
constants.

C.1.3. PSNR

Peak Signal-to-Noise Ratio (PSNR) is a standard metric for
evaluating the similarity between two images. It quantifies
the ratio between the maximum possible signal power and
the power of the noise that affects image quality. In our
context, PSNR is used to compare the edited versions of the

unprotected image (denoted as I,,) and the protected image
(denoted as I,).
The PSNR is defined as:
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where L is the maximum possible pixel value (e.g., 255 for

8-bit images), and the mean squared error (MSE) is com-
puted as:

_ 1 N N2
MSE(L, I,) = + ; (T = Ts) )
Here, N is the total number of pixels in the image.
C.1.4. Visual Information Fidelity (VIF)

VIF [6] measures the amount of visual information retained
in a distorted image relative to the original:



Human Eval on Image Protection Against
Malicious Editing

The survey consists of two types of questions:

Image Fidelity Assessment: You will be shown images protected by different methods,
including ours. Please rate them on a scale of 1 to 5 based on how well they maintain
visual similarity to the original image. Left to Right order - Input Image, Method 1, Method
2,.., Method 5.

Protection Effectiveness: You will compare images that have undergone malicious edits.
Your task is to evaluate how well each protection method prevents or disrupts
unauthorized modifications. If the edited image doesn't resembles the original image or it
doesn't fulfil the edit instruction, then the method of protection is good and vice-

versa. Left to Right order - Edited Image from Input Image, Edited image from Method 1
protected image, Edited Image from Method 2 protected image, .., Edited Image from
Method 5 protected image.

Note: Rating 5 is best and Rating 1 is worst. Give rating to all the methods.
Your feedback will help us refine our approach and improve image protection techniques

Thank you for your time and valuable input!

Rate on the basis of image fidelity retained wrt original image. *

- e

Method 1

Method 2 O

Human Eval Survey for Inpainting

Thank you for participating in this study! This survey is part of our research on protecting
images from unauthorized edits by generative models. Our method aims to immunize
images, making them resistant to malicious modifications.

In this survey, you will see an immune image along with an editing instruction. You will
then be presented with inpainted images generated using our method and four other
baseline methods. Your task is to rate each method on a scale of 1 to 5 based on how well
it prevented the requested edit.

- If an edited image successfully follows the instruction, the corresponding method failed
to immunize the source image and hence give that method a lower rating.

- If the edit is blocked or disrupted, the method was successful in preventing malicious
modification and hence give that method a higher rating

Note: Left to Right Order - Input Image, Edited Image from Immunized Image of Method 1,
Edited Image from Immunized Image of Method 2, .., Edited Image from Immunized
Image of Method 6.

Your feedback will help us evaluate and improve image immunization techniques. Thank

you for your time and insights!

Edit Inst - a girl in a military camp
1 2 3 4 5

Method 1 @) O O
Method 2 O O O

Figure 2. Snapshots of Google forms used to collect human feedback for editing and inpainting tasks.
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where, I(C;; F;|S;) is the mutual information between
the original image and its features, I(C;; E;|.S;) is the mu-
tual information between the distorted image and its fea-
tures.

(&)

C.1.5. Learned Perceptual Image Patch Similarity
(LPIPS)

LPIPS [8] evaluates perceptual similarity by comparing
deep feature representations:

LPIPS(z, y) :Zlefl(x)_fl(y)”% (6)
I

where, fi(x) and f;(y) are deep feature representations
at layer [, w; are learned weights for each layer.

We use the open-source library pyiga ' for computing
the above mentioned image quality metrics.

C.1.6. CLIP Score for Text-to-Image Similarity

CLIP (Contrastive Language-Image Pre-training) [5] is a
model that jointly trains vision and text encoders to create
aligned representations of images and text. To evaluate how
well an edit follows a given instruction, we measure the co-
sine similarity between the text representation of the target
description, C LI Pieyt (Ieqit), and the image representation

lhttps://qithub.com/chaofenqc/IQA—PyTorch

of the edited output, C LI P;pqge(Tedit) , Where gy is the
inpainted image. A higher similarity score suggests that the
edit better matches the intended changes. This metric helps
assess how faithfully the edits reflect the given instructions.

C.2. Human Evaluation

To supplement our quantitative analysis, we conduct two
human evaluation surveys to assess the effectiveness of our
image protection method against malicious editing in two
different tasks. We create Google Forms (Figure 2) and dis-
tribute them to 50 participants, receiving responses from 42.
Each participant reviews and provides feedback on 30 sam-
ples per task. The specific evaluation criteria for comparing
different methods are detailed below.

Comparison of Protected Image Fidelity and Edit-
ing Robustness. In this evaluation, participants compare
the protected images generated by our method and various
baseline methods. They rate each method on two aspects:

* Fidelity to the Original Image: Participants score the
protected image’s similarity to the original image on a
scale of 1 to 5, where 5 indicates high similarity and 1
indicates significant distortion.

* Robustness to Malicious Editing: Given an edit instruc-
tion, participants rate how well the protected image pre-
vents the edit. A score of 5 means the edit instruction
is not followed (indicating strong protection), whereas
a score of 1 means the edit is well-executed (indicating
weak protection).


https://github.com/chaofengc/IQA-PyTorch
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Figure 3. More Results on the Editing Task.

Comparison of Inpainting Results Under Malicious
Editing. This evaluation focuses on the effectiveness of
protection against malicious background modification. Par-
ticipants assess images where an adversarial edit is applied,
such as changing the background to a completely different
scene (e.g., from a home setting to a jail).

Each method is rated on a 1 to 5 scale:

e 1 —If the edit is successfully applied, meaning the protec-
tion failed.
e 5 —If the edit is blocked, indicating effective protection.

By aggregating responses, we can evaluate how well our
method prevents unauthorized modifications compared to
existing approaches.

D. More Experimental Results

In this section, we present additional results and compar-
isons with baseline methods.

D.1. More Qualitative Results

Figure 3 visualizes the edits produced by different protec-
tion techniques. Notably, our method introduces the most
significant alterations to the input image, effectively chang-
ing the subject’s identity and making it less recognizable.
Compared to the baselines, our approach adds minimal per-
turbation artifacts, thus offering strong protection at lower
imperceptibility of the added noise.

We provide additional qualitative results for the inpaint-
ing task in Figure 4. As shown in the immunized images,
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Figure 4. More Results on the Inpainting Task.

our method confines noise to the masked region, whereas
other approaches, such as AdvDM, MIST, and SDS(-), ap-
ply noise across the entire image. The qualitative results
demonstrate that our approach is more effective at prevent-
ing malicious modifications, outperforming baseline meth-
ods in blocking adversarial intent.

D.2. Comparison across DCT-Shield Variants

In this section, we present a systematic ablation study to
isolate and evaluate the individual contributions within the
DCT-Shield framework. We investigate how introducing
adversarial perturbations into different color-space channel
coefficients affects overall robustness. Additionally, for the
inpainting task, we examine the role of incorporating mask-
ing during the optimization process, analyzing its impact on
edit protection. Through this careful comparison, we aim
to elucidate which elements are most critical for enhancing
adversarial resilience in our proposed method.

Y vs YCbCr. The Y-channel variant adds adversar-
ial perturbations only in the Y-channel, offering improved
JPEG robustness with lower perceptual noise. Figure 5
compares it with the base (YCbCr) variant in terms of the
protection—perception trade-off. While the base variant per-

forms better before purification (green lines), the Y-channel
variant consistently outperforms it after purification across

JPEG levels.
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Figure 5. Comparison between the performance of Y-Channel
and Base (YCbCr) Variants of DCT-Shield. The x-axis shows
noise perceptibility (LPIPS; lower is better), and the y-axis shows
edit protection (LPIPS; higher is better). Solid and dashed lines
represent the base (YCbCr) and Y-channel variants, respectively.
Green lines indicate edit protection before JPEG purification,
while other colors indicate JPEG robustness after purification.
Marker numbers denote the Q414 values used by DCT-Shield for
immunization.
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Figure 6. JPEG Robustness. Figure shows the editing results of protected images generated at different compression levels Q14 (INQ in
figure) using DCT-Shield (left-right) under different JPEG purification levels (top-bottom))

Masked vs Unmasked. The masked variant was in-
troduced specifically for inpainting tasks. In Table I, we
compare the masked and unmasked (base) variants of DCT-
Shield. While the unmasked variant performs slightly worse
for inpainting, it still provides reasonable protection, com-
parable to other baselines. When object masks are avail-
able, we recommend using the masked variant, as it offers
stronger defense with lower perceptual noise confined to the
masked region.

LPIPST FID{  CLIPJ
DCT-Shield (Masked) | 0.547 199.082 0.674
DCT-Shield (Unmasked) | 0.532 188.827  0.691

Table 1. Comparison of Masked and Unmasked (base) variants of
DCT-Shield. Refer to Table 2 of main paper for baseline results.

D.3. Robustness against Other Defenses

In addition to the purification techniques evaluated in the
main paper, we present further results in this supplementary
section on Gaussian Noising and Noisy Upscaling from [3],
as well as Impress, introduced in [1]. Fig. 7 shows that
DCT-Shield achieves superior robustness against Gaussian
Noise and Impress compared to other baselines. In contrast,
all methods—including ours—exhibit only modest robust-
ness against Noisy Upscaling, highlighting a promising di-
rection for future work on improved immunization.
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Figure 7. Robustness against additional purification tech-
niques. Comparison of DCT-Shield with baseline methods in
terms of LPIPS(1) between edits of original and purified images.

D.4. JPEG Robustness as a Function of Q,

In figure 6, we visualize the edit protection by varying the
quality parameter (044 in DCT-Shield. We observe that
running our algorithm at Q4 = ¢ generates images that
provide protection at attackers compression quality q, >q.

D.S. Cross-Model Transferability

Our method provides transferable defense, as demonstrated
in Table 2. Images immunized with the masked variant of
DCT-Shield (using the VAE from Stable Diffusion Inpaint-
ing 1.0) were subsequently edited using Stable Diffusion
Inpainting 2.0. DCT-Shield outperforms baselines in terms
of transferability, offering stronger edit protection.



DCT-Shield PhotoGuard DiffGuard AdvDM MIST SDS (-)
LPIPS T | 0.527 0.506 0.495 0.477 0.502  0.495
CLIP| | 0.714 0.716 0.717 0.74 0.722  0.726

Table 2. Cross-model transfer to Stable Diffusion Inpainting 2.0
from Stable Diffusion Inpainting 1.0.

E. Limitations

While our method provides strong protection against mali-
cious edits, it is specifically designed for the LDM model,
which limits its applicability to other editing frameworks.
Advanced purification techniques, such as Noisy Upscaling,
substantially diminish the effectiveness of both our method
and baseline approaches, underscoring the need for further
research and improvement.

References

[1] Bochuan Cao, Changjiang Li, Ting Wang, Jinyuan Jia, Bo Li,
and Jinghui Chen. Impress: Evaluating the resilience of im-
perceptible perturbations against unauthorized data usage in
diffusion-based generative ai. In Advances in Neural Infor-
mation Processing Systems, pages 10657-10677. Curran As-
sociates, Inc., 2023. 6

[2] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium,
2018. 1

[3] Robert Honig, Javier Rando, Nicholas Carlini, and Florian
Tramer. Adversarial perturbations cannot reliably protect
artists from generative Al. In The Thirteenth International
Conference on Learning Representations, 2025. 6

[4] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollér, and Ross
Girshick. Segment anything. arXiv:2304.02643,2023. 1

[5] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748-8763. PmLR, 2021. 3

[6] Hamad R. Sheikh and Alan C. Bovik. Image information and
visual quality. IEEE Transactions on Image Processing, 15
(2):430-444, 2006. 2

[7]1 Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing, 13(4):
600-612, 2004. 2

[8] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep fea-
tures as a perceptual metric. In CVPR, 2018. 3



	DCT-Shield Algorithm
	Dataset
	Evaluation Details
	Quantitative Metrics
	Frechet Inception Distance (FID)
	Structural Similarity Index Measure (SSIM)
	PSNR
	Visual Information Fidelity (VIF)
	Learned Perceptual Image Patch Similarity (LPIPS)
	CLIP Score for Text-to-Image Similarity

	Human Evaluation

	More Experimental Results
	More Qualitative Results
	Comparison across DCT-Shield Variants
	Robustness against Other Defenses
	JPEG Robustness as a Function of Qalg
	Cross-Model Transferability

	Limitations

