Wide2Long: Learning Lens Compression and Perspective Adjustment
for Wide-Angle to Telephoto Translation

Supplementary Material

1. Additional Details and Experiments

1.1. Details of Data Acquisition

As mentioned in Section 5.1 of the main paper, we use both
real-world and synthetic image pairs in our dataset on lens
compression for f; = 2f; change in focal length. For cap-
turing real-world images, we use a Panasonic Lumix G7
mirrorless camera, with a micro four-thirds image sensor.
The sensor has a crop factor of 2 when compared to a full
frame (35 mm) sensor, implying that the equivalent focal
length of any lens used on the camera is doubled.

For the source images we use a Sigma 18-35 mm, F/1.8
lens with a 0.7x speed-booster, giving us an equivalent fo-
cal length of 25.2 mm on the wider end. For the target im-
ages, we use a Panasonic Lumix 25 mm, F/1.7 lens, giv-
ing us an equivalent focal length of 50 mm. We follow the
methodology for capturing images as outlined in Section 3
of the main paper. To keep the size of the subject in both
source and target images constant, we use visual markers
(e.g. masking tapes) on the camera monitor or within the
scene (which we remove while capturing) to serve as a ref-
erence. All camera parameters like aperture, shutter speed,
ISO, white balance, etc. are kept constant while capturing
an image-pair. 168 image pairs among the 600 in our dataset
are captured manually.

\
source

"
b
:

source | target

source target

Figure 1. Source-target pair examples in our dataset, captured
manually.

To capture synthetic images we use a combination of two
software platforms - Unity* and Taitopia’. Both are 3D ray-
tracing, modeling and scene rendering applications, with
access to a huge repository of open-source, pre-designed
3D scenes and assets, although Taitopia requires a render-
ing fee for each image. With Unity, we set the source and

“https://unity.com/
Shttps://taitopia.design/

target focal lengths as 25 mm and 50 mm respectively, and
capture the corresponding frames by using markers much
like we did for the real-world images. In Taitopia, we had
the added option of choosing a particular part of the scene
to be in sharpest focus, and retain the size of that part when
switching between focal lengths, making the image captur-
ing process faster.

]
Q.
o

=
fud

£

Figure 2. Source-target pair examples in our dataset, captured syn-
thetically.

Both Unity and Taitopia generate accurate lens compres-
sion effects by leveraging advanced rendering pipelines and
precise camera simulation algorithms®. In Unity’, features
like the High-Definition Render Pipeline (HDRP) enable
accurate modeling of lens behaviors, including focal length,
field of view, and distortion effects that replicate real-world
lens compression. This is achieved by adjusting the per-
spective projection matrix and dynamically simulating how
objects appear closer or further apart based on the camera’s
settings. Taitopia complements these techniques with spe-
cialized 3D capture technology and algorithms® that refine
spatial accuracy and depth mapping, ensuring photorealis-
tic compression effects. Together, these tools create a robust
platform for producing lifelike visuals where lens compres-
sion accurately mimics physical optics. As before, we kept
all other camera parameters constant for any source-target
pair.

Out of all image-pairs acquired, we randomly pick 100
image-pairs to form our test set, on which we evaluate
Wide2Long’s performance in terms of SSIM, PSNR and
LPIPS in Section 5.2 of the main paper.

Gregory J. Ward. The radiance lighting simulation and rendering sys-
tem. Proceedings of the 21st Annual Conference on Computer Graphics
and Interactive Techniques, pages 459-472, 1994.

"https://docs.unity.com/

Shttps://docs.taitopia.design/

— n=1 n=2 n=3 n=4
..
L.I. =
L.I. >...
r 's
..
Ll F
] -
I.LR.R., LS.F. ’_...

HEEER

n=5

—1OM,

10T,

—u=I(,T, 1)

L 0 =
© =, ©0,

s I',=1°, 0D, flatten

oo (post-scaling)

Figure 3. Visual example of the W2L pipeline in operation. Note that the final row shows the inpainted layers after applying the difference

map and scaling.

1.2. Wide2Long: Layer Generation Example

We provide an instance of the Wide2Long pipeline being
applied to an image I (same as in Figure | of the main pa-
per). The outputs after each stage (or a part of it) is shown
step by step in Figure 3, right up to the formation of the
scaled layers, which will be flattened to give the output im-
age. We use the same notations and acronyms as in Section
4.2 of the main paper.

After generating the depth-map I e, from I, the depth-
masks M, generated (n = 0,1,...,N) segregate I into
(N + 1) image regions. Each n'" image region is then
stacked with the regions preceding it (if any) to give suf-
ficient context input to the inpainting model Z to fill the oc-
clusion region (shown in black in the second row in Figure
3). This is the same as inpainting the occlusion in (I ® ()
using Z, with (I ®) serving as the dilated inpainting mask
(as detailed in Section 4.2 of the main paper). The resul-
tant inpainted outputs ¢,, are then masked to subtract the
additional stacked regions and produce the in-painted im-

age regions (.. These +2 are then masked in turn using the
D!, maps (computed as in Section 4.3 of the main paper)
to give I/, which are then scaled by an amount p,,, defined
by Equation 12 in the main paper. The scaled I},’s are then
overlaid and flattened to give the final output image 1,,;.

1.3. How ~ can vary with N

As stated in Section 4.5 of the main paper, the data-driven
~ can scale differently for different values of N during the
scaling factor computation.

To show this, we rewrite Equation (12) of scaling fac-
tor computation from the main paper for the case where a
change in the value of (N + 1) has resulted in a change in
the difference between depth layer indices as follows:

p(i,j) =) 1)
where the difference in the depth layer indices has changed

from (ny—n(; ;)) to 7(ny —n ;) with T € R, As (N +
1) is the number of depth layers, the difference between any

source

target output target output

2x

ax

8x

SSIM (1): 0.784
PSNR (1): 19.903
LPIPS (1): 0.101

SSIM (1): 0.892
PSNR (1): 23.379
LPIPS (1): 0.068

target output target

SSIM (1): 0.841
PSNR (1): 22.406
LPIPS (4): 0.082

SSIM (1): 0.856
PSNR (1): 23.132
LPIPS (J): 0.075

Figure 4. Qualitative results showing the performance of our W2L pipeline in simulating lens compression associated with f; = 2P f,. To
demonstrate p = 1, 2, 3 are chosen, and the metric values shown at the bottom of each column is the average obtained for the corresponding
targeted 2x, 4x and 8x changes in focal length. The results for a particular f; = 27 f, has been obtained applying our W2L method

iteratively p times.

two layer indices will obviously be scaled as per the change
in the NV value.

Now, if the appropriate scaling factor for pixel (i, j) is
obtained when NV has a particular value, it must not change
with change in the value of N. So, we have p/(i,j) =
p(i, 7). Therefore, comparing Equation (1) to Equation (12)
in the main paper, we immediately have v/ = (1/7)~.

This means that we can conveniently change the value of
(N + 1) (number of depth layers) during inference as per
the user’s choice and the nature of the data, while scaling
the learnt y by (1/7). Thus, the extent of layering can be
varied as per the requirements of the image data without the
need to retrain the I2P model instances again.

1.4. Additional Lens Compression Results

We apply our Wide2Long pipeline to a few other fs — f; =
2P fs examples where p = 1,2, 3. This experiment is to ob-
serve the performance of our pipeline in producing the nec-
essary optical transformations for lens compression related
to different p values. Figure 4 shows the qualitative and
quantitative performance on such image-pairs with multi-
ple (fs, 2P f5). The metric values at the bottom of each sam-

ple shows the averaged values of SSIM, PSNR and LPIPS
across p = 1,2,3. Since our pipeline has been trained to
simulate lens compression for a 2x change in fs, the first
output from the pipeline (first row) serves in turn as the in-
put to the W2L pipeline to generate the next higher order
lens compression. So for a lens compression corresponding
to a 2P x focal length change, we need p passes through the
W2L pipeline. All images shown in the figure are generated
using Unity.

As can be seen from the figure, in all the examples, the
proposed pipeline performs lens compression by maintain-
ing the size of the main subject and scaling the rest of the
contents, achieving decent performance metric values. This
shows that Wide2Long, although trained only once to gen-
erate 2x lens compression, can be used iteratively to gener-
ate higher orders of targeted lens compression.

Performance comparison on Real and Synthetic Im-
ages All synthetic computer-generated (C. G.) images in
our dataset are generated fundamentally with ray tracing’

9 Andrew S. Glassner. An Introduction to Ray Tracing. Academic Press,
1989

algorithms, based on the principles of physical optics. So,
the properties of Lens Compression should hold true for
all synthetic images in our dataset, as it does for the
real images. To further validate this point, we apply our
Wide2Long pipeline on the real and synthetic image pairs
in the test-set separately, and we observe that the perfor-
mance of W2L remains same for real as well as for C.G.
images. Table 6 reports these results.

Metric Real (56 pairs) | C.G. (44 pairs)
SSIM (1) 0.766 0.770
PSNR (1) 20.078 19.613
LPIPS () 0.140 0.138

Table 6. Performance on real and computer-generated image pairs.

Focal length-agnostic W2L. Further, it can be seen
from Figure 4 that W2L can be applied to implement lens
compression corresponding for any 2x change in focal
length. The results show that W2L can produce outputs con-
sistent with the target image for focal length jumps such as
25 — 50 mm, 50 — 100 mm and 100 — 200 mm, and in-
dicates that the Wide2Long pipeline is indeed focal length-
agnostic and learns only the amount of lens compression,
irrespective of the focal length values of the lenses.

source

target

output

<=
d gl

Figure 5. Some failure cases of the Wide2Long pipeline.

2. Failure Cases

We provide qualitative examples of failure cases across the
test samples in our W2L dataset, as shown in Figure 5.
These are attributed primarily due to improper parameter
estimation, such as the scaling parameter v and the in-
painting parameter A, for such samples. These result in
undesired scaling of the depth-layers from foreground to
background, along with gaps in the in-painting for cases
where the lens compression might reveal objects or portions
thereof which are outside frame in the source image. Also,
inaccurate depth-estimation results in incorrect segregation
of objects across layers, which leads to discrepancies.

	Introduction
	Related Work
	Background and Relevance
	Wide2Long - The Proposed Approach
	Depth-based Layering (DBL)
	Layer-wise Inpainting (LI)
	Inter-layer Redundancy Reduction (ILRR)
	Layer Scaling and Flattening (LSF)
	Convolutional Network `Image2Param' (I2P) for Parameter Estimation

	Experiments and Results
	Dataset Acquisition
	Lens Compression on Our Dataset
	Perspective Distortion Correction in Portraits
	Results on Images In-the-Wild
	Ablation Study

	Conclusion
	Additional Details and Experiments
	Details of Data Acquisition
	Wide2Long: Layer Generation Example
	How can vary with N
	Additional Lens Compression Results

	Failure Cases

