
RCTDistill: Cross-Modal Knowledge Distillation Framework for Radar-Camera
3D Object Detection with Temporal Fusion

Supplementary Material

This Supplementary Material provides further informa-
tion to complement our main paper. We first provide a com-
prehensive description of our model’s implementation details
(Section 1), followed by detailed architecture specifics (Sec-
tion 2). Subsequently, we present extended experimental
results, including additional ablation studies and quantitative
outcomes (Section 3). Finally, Section 4 presents qualitative
results with visualizations.

1. Implementation Details

We implemented our model using the MMDetection3D [2]
open-source framework. The hyperparameters λRA, λT, and
λRD, which control the weights of each loss term in Equation
(12), were empirically set to 6, 0.01, and 50, respectively.
We measured RCTDistill’s FPS on an RTX 3090 GPU, and
used the FPS reported in the respective papers for all other
methods
Evaluation Metrics. We follow the official nuScenes [1]
evaluation protocol and report the nuScenes Detection Score
(NDS), which integrates mean Average Precision (mAP)
with five true-positive submetrics: mean Average Translation
Error (mATE), mean Average Scale Error (mASE), mean
Average Orientation Error (mAOE), mean Average Velocity
Error (mAVE), and mean Average Attribute Error (mAAE).
Training configuration. Our baseline model employs a two-
stage training strategy: first, training with single-frame input
for 6 epochs, followed by incorporating 8 past frames for the
subsequent 60 epochs (66 epochs in total). For our proposed
RCTDistill, we follow the training protocol of CRKD [10],
initializing from a pre-trained baseline model while keeping
the teacher model frozen throughout the 60 epochs training
process. For the teacher model, we employ CenterPoint
with a SECOND backbone. The detailed training configura-
tions for different backbone architectures are summarized in
Table 1.

Configs ResNet-50 ResNet-101 ConvNeXt-B
Image Size 256×704 512×1408 512×1408
BEV Size 128×128 256×256 256×256

Base Learning Rate 2e-4 1e-4 2e-4
Weight Decay 1e-7 1e-2 1e-2

Optimizer Momentum 0.9, 0.999 0.9, 0.999 0.9, 0.999
Batch Size 16 8 16

Training Epochs 60 60 60
Gradient Clip 35 5 5

Table 1. Training settings for different backbone networks.

Hardware. We perform experiments using 4× NVIDIA RTX
3090 GPUs for ResNet-50-based models and 4× NVIDIA
A100 GPUs for ResNet-101 and ConvNeXt-B-based models.
Data augmentation. During training, we utilize compre-
hensive data augmentation strategies following prior works
[4, 6, 8, 9]. For Image-view-space Data Augmentation (IDA),
we apply horizontal flipping, scaling (−0.06 to 0.11), and
rotations (±0.54◦). BEV-space Data Augmentation (BDA)
includes random flipping along the X and Y axes, scaling
(0.95-1.05), and rotations (±0.3925 rad). We enhance radar
data robustness through randomly drop sweeps and points
[7]. For LiDAR data augmentation, we apply random flip-
ping (X and Y axes), rotations, scaling, and translations.
The detection range is set to [−51.2m, 51.2m] for the X
and Y dimensions and [−5m, 3m] for Z, with voxel dimen-
sions of (0.1m, 0.1m, 0.2m).

Methods HA-Net TKD NDS↑ mAP↑
Baseline 55.0 47.1

RCTDistill
✓ 55.7 48.0
✓ ✓ 57.0 48.5

Table 2. Ablation study of HA-Net.

2. Details of HA-Net

We introduce Temporal Knowledge Distillation (TKD) to
mitigate feature misalignment along the trajectory direction
caused by the motion of dynamic objects. In this process,
we apply HA-Net to align and merge historical BEV fea-
tures across consecutive frames, effectively facilitating TKD.
The detailed structure of HA-Net is shown in Figure 1. The
HA-Net first integrates historical BEV features through con-
catenation and a 1 × 1 convolution layer, followed by two
down-sampling blocks. The first block comprises a 3 × 3
convolution with layer normalization and two UniRepLK
[3] blocks, each employing 3× 3 depth-wise convolutions.
The second block follows a similar structure, starting with a
3× 3 convolution and layer normalization, but includes only
a single UniRepLK block with a larger 13× 13 convolution
kernel to expand the receptive field. Finally, two up blocks
with residual connections are utilized to produce the aligned
historical features. The large receptive field of HA-Net in-
tegrates feature variations, clearly capturing the motion of
dynamic objects and effectively resolving temporal inconsis-
tencies in historical BEV features.
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Figure 1. Detailed structure of HA-Net.

αl αw NDS↑ mAP↑
15 3 57.6 50.3
25 5 58.4 51.0
50 10 57.8 50.6

(a) α: The scaling factor in RAKD.

τ NDS↑ mAP↑
0.05 57.4 49.9
0.1 58.4 51.0
0.2 57.2 49.8

(b) τ : Mask threshold in RAKD, TKD and
RDKD.

ts NDS↑ mAP↑
2 57.6 50.8
3 58.4 51.0
4 57.3 50.4

(c) ts: History reference time in TKD.

Table 3. Ablation studies of hyperparameters.

# of H.F. Mem (GB) GFLOPs FPS↑ NDS↑ mAP↑
2 2.865 168.3 26.5 55.8 47.6
4 2.871 168.5 26.5 56.9 49.4
8 2.945 168.9 26.2 58.4 51.0

Table 4. Evaluation model efficiency. H.F.: history frames, Mem:
GPU memory usage.

Table 2 presents the experimental results analyzing the
contributions of HA-Net and TKD to performance improve-
ment. When HA-Net was applied to the baseline model,
NDS increased by 0.7% and mAP improved by 0.9%. Subse-
quently, implementing TKD yielded an additional enhance-
ment of 1.3% in NDS and 0.5% in mAP. These findings
suggest that the performance gains are not solely due to
HA-Net’s enhanced capacity but also stem from TKD’s abil-
ity to address challenges posed by the motion of dynamic
objects, playing a vital role in further boosting accuracy.
Furthermore, the results demonstrate that HA-Net and TKD
contribute to performance improvements in a synergistic
manner.

3. Additional Experiments

Hyperparameters Analysis. Table 3 presents the ablation
studies for the hyperparameters used in RCTDistill. Table 3a
explores the scaling factor αl, αw, which determines the

lengths of the major and minor axes radius r1 and r2 in the
elliptical region in RAKD. For both of r1 and r2, the best
performance is achieved when αl is set to 25 and αw is set
to 5. Table 3b analyzes the threshold τ , which is used to
construct the mask region in the three proposed knowledge
distillation methods. As the τ value decreases, the number
of background BEV grids rises, reducing the proportion of
crucial BEV grids, which may hinder the model’s ability
to focus on essential locations. Conversely, if the τ value
is too high, crucial BEV grids may be missed, potentially
leading to decreased performance. Table 3c investigates the
historical reference time ts, which is used to determine the
center position of the temporal mask for each object in TKD.
When ts exceeds 3, the mask region becomes excessively
large, including irrelevant information. Conversely, when
ts is less than 3, it restricts the range of the temporal mask,
which prevents adequate consideration of the uncertainties
associated with dynamic objects. Experimental results show
that optimal performance is achieved when t is set to 3.
Efficiency analysis. Table 4 summarizes the efficiency and
accuracy changes in RCTDistill as the number of history
frames increases. Our model utilizes a memory bank mecha-
nism to store and reuse precomputed BEV features, which
ensures that adding more history frames leads to only a
minimal increase in GPU memory usage, GFLOPs, and the
number of parameters. As a result, our model leverages
additional frames with minimal impact on computational



Methods C.B. R.B. Encoder Decoder HEAD Total
Baseline 12.01 3.27 11.11 3.46 6.12 35.97

RCTDistill 12.01 3.27 13.32 3.46 6.12 38.25

Table 5. Ablation study of inference time.

(a) VCD (b) RCTDistill

Figure 2. Comparison of temporal knowledge distillation region in RCTDistill and VCD [5]. Pink arrows represent ground truth (GT)
velocityW vector at each time step. White region denotes temporal knowledge distillation region. Red boxes denotes dynamic GT at the
current timestamp, while green boxes represent dynamic GT at previous timestamps. The green boxes that are continuously connected to the
red boxes indicate the previous positional information of the same object. RCTDistill considers the entire trajectory of fast-moving objects,
while VCD does not completely capture it.

resources, significantly boosting performance.

Table 5 provides each component’s latency in millisec-
onds for Baseline and RCTDistill. RCTDistill was designed
using three distinct distillation losses based on a baseline
model. Distillation methods are typically employed only
during the training phase, ensuring no additional latency is
introduced during inference relative to the baseline model.
However, in the Temporal Knowledge Distillation (TKD)

process proposed in RCTDistill, we introduced an additional
module called HA-Net to capture the temporal variation of
historical BEV feature maps between consecutive frames.
This integration may slightly increase the encoder’s latency
during inference relative to the baseline model; however, this
difference is minimal and does not significantly impact over-
all efficiency. As a result, RCTDistill is a model designed
to maximize performance through diverse distillation losses



during training while maintaining high efficiency during
inference, thereby demonstrating its overall effectiveness.

TKD NDS↑ mAP↑ mATE↓ mAVE↓

Static 44.4 25.7 0.532 0.054
✓ 45.7+1.3 25.8+0.1 0.524 0.044

Dynamic 38.5 16.4 0.537 0.536
✓ 41.4+2.9 18.0+1.6 0.504 0.505

Table 6. TKD performance comparison for static and dynamic
objects.

Methods False Positive False Negative mAP↑
Baseline 100.0 100.0 47.1

Baseline+RDKD 66.5 84.7 49.0

Table 7. Comparison of FP and FN before and after RDKD.

Analysis of the TKD method. The proposed TKD method
leverages the velocity of dynamic objects at the current time
step to generate an elliptical Gaussian mask along the ob-
ject’s trajectory. This mask is used as the knowledge dis-
tillation region, effectively mitigating errors caused by the
motion of dynamic objects during the temporal fusion pro-
cess. In contrast, VCD [5] proposes a distillation method
that leverages the central region of the ground truth at all
time steps.

As illustrated in Figure 2, the TKD approach captures the
entire trajectory area even for fast-moving objects, whereas
the VCD [5] method has limitations in capturing this region.
These results demonstrate that our proposed method better
reflects the trajectory area of dynamic objects compared to
conventional method.

Table 6 presents the performance of TKD when applied
to static objects (|v| ≤ τv) and dynamic objects (|v| > τv),
with τv set to 0.1 m/s. The experimental results reveal a
significant performance gain in dynamic objects relative to
static objects after TKD is applied. This indicates that TKD
not only enhances overall detection accuracy but also pro-
vides superior performance specifically for dynamic objects.
Analysis of the RDKD method. In RDKD, the student
model selects BEV feature positions based on a low thresh-
old score, resulting in most areas being selected during the
early stages of training. As training progresses, knowledge
transfer from the teacher model helps refine these initially
inaccurate selections, reducing FP (false positive) and FN
(false negative).

Table 7 illustrates the performance variation before and
after applying RDKD. With RDKD, the FP is reduced by
33.5%, the FN by 15.3%, and the mAP is improved by 1.9%.
This indicates that RDKD contributes to overall performance
enhancement by boosting foreground features and suppress-
ing background features.

4. Qualitative Results

Figure 3 presents a qualitative analysis of our RCTDistill ap-
proach on the nuScenes validation dataset. We compare the
object detection results between RCTDistill and a baseline
model by visualizing the predictions in BEV space. Both
models utilize a ResNet-50 backbone to extract features from
camera inputs. The left image highlights the effectiveness
of TKD, showing that RCTDistill significantly reduces false
positive detections along the trajectory of dynamic objects
compared to the baseline. Similarly, the middle and right
images emphasize the benefits of RAKD, as RCTDistill
achieves higher detection accuracy in the range-azimuth di-
rection and demonstrates superior performance in detecting
small objects compared to the baseline.

References
[1] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,

Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11621–11631, 2020. 1

[2] MMDetection3D Contributors. MMDetection3D: Open-
MMLab next-generation platform for general 3D object
detection. https://github.com/open-mmlab/
mmdetection3d, 2020. 1

[3] Xiaohan Ding, Yiyuan Zhang, Yixiao Ge, Sijie Zhao, Lin
Song, Xiangyu Yue, and Ying Shan. Unireplknet: A uni-
versal perception large-kernel convnet for audio video point
cloud time-series and image recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5513–5524, 2024. 1

[4] Junjie Huang, Guan Huang, Zheng Zhu, Yun Ye, and Dalong
Du. Bevdet: High-performance multi-camera 3d object de-
tection in bird-eye-view. arXiv preprint arXiv:2112.11790,
2021. 1

[5] Linyan Huang, Zhiqi Li, Chonghao Sima, Wenhai Wang, Jing-
dong Wang, Yu Qiao, and Hongyang Li. Leveraging vision-
centric multi-modal expertise for 3d object detection. Ad-
vances in Neural Information Processing Systems, 36:38504–
38519, 2023. 3, 4

[6] Youngseok Kim, Juyeb Shin, Sanmin Kim, In-Jae Lee,
Jun Won Choi, and Dongsuk Kum. Crn: Camera radar net for
accurate, robust, efficient 3d perception. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 17615–17626, 2023. 1

[7] Zhaoqi Leng, Guowang Li, Chenxi Liu, Ekin Dogus Cubuk,
Pei Sun, Tong He, Dragomir Anguelov, and Mingxing Tan.
Lidar augment: Searching for scalable 3d lidar data augmen-
tations. In IEEE International Conference on Robotics and
Automation, pages 7039–7045. IEEE, 2023. 1

[8] Yinhao Li, Zheng Ge, Guanyi Yu, Jinrong Yang, Zengran
Wang, Yukang Shi, Jianjian Sun, and Zeming Li. Bevdepth:
Acquisition of reliable depth for multi-view 3d object detec-

https://github.com/open-mmlab/mmdetection3d
https://github.com/open-mmlab/mmdetection3d


R
C

T
D

is
ti

ll
B

as
el

in
e

Figure 3. Qualitative results comparing RCTDistill and Baseline. Blue, green and red boxes denotes prediction, static and dynamic
ground truth (GT), respectively. Highlighted regions with dashed orange boxes emphasize areas where RCTDistill effectively handles
modality-specific uncertainties and the motion of dynamic object, demonstrating improved object localization and reduced false positives
compared to the Baseline.
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