
Dataset Distillation as Data Compression: A Rate-Utility Perspective
Supplementary Material

Youneng Bao1,3,*, Yiping Liu1,*, Zhuo Chen2, Yongsheng Liang1, Mu Li1,†, Kede Ma3,†
1Harbin Institute of Technology, Shenzhen 2Peng Cheng Laboratory 3City University of Hong Kong

younebao@cityu.edu.hk, yipingliu@stu.hit.edu.cn, chenzh08@pcl.ac.cn

{liangys,limu2022}@hit.edu.cn, kede.ma@cityu.edu.hk

https://nouise.github.io/DD-RUO

Abstract
This appendix elaborates on 1) the information-theoretic cost of encoding soft labels, 2) full hyperparameter and architecture
configurations in our joint rate-utility optimization method, 3) expanded quantitative results, 4) runtime statistics for synthetic
dataset generation, and 5) more synthetic data visualizations.

A1. Bitrate for Soft Labels
Let Y = {ỹ(i)}Ni=1 be a collection of soft classes, where each ỹ(i) is a probability vector

ỹ(i) = [ỹ
(i)
1 , . . . , ỹ

(i)
K ], ỹ

(i)
k ≥ 0,

K∑
k=1

ỹ
(i)
k = 1, (A1)

lying in the (K − 1)-simplex ∆K−1. To encode these continuous vectors, we quantize ∆K−1 into B cells (i.e., “bins”) of
side length ϵ. Denote by {Ωi}Bi=1 the partition cells, each with volume Vol(Ωi) ≈ ϵK−1, and let

Pi =

∫
Ωi

p(ξ)dξ (A2)

be the probability mass of soft labels falling in bin Ωi under the true (non-uniform) density p(ξ). The optimal bitrate per
label, using entropy coding, is given by the Shannon entropy of the mass distribution:

r(Y) ≈ Entropy(P ) = −
B∑
i=1

Pi log2 Pi, (A3)

which accounts for non-uniform concentrations of soft labels across the simplex. As entropy is maximized when Pi = 1/B
for all i, we have

r(Y) ≤ log2 B ≈ log2

(
Vol(∆K−1)

ϵK−1

)
= log2

(
1

(K − 1)!ϵK−1

)
=− log2(K − 1)!− (K − 1) log2 ϵ. (A4)

where Vol(∆K−1) = 1/(K − 1)!. This recovers the bound in the main text for worst-case (uniform) quantization.

*Equal contribution.
†Corresponding authors.
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Practical illustration. For single-precision floats (i.e., fp32) the 24-bit mantissa roughly yields a machine precision of
ϵ ≈ 2−24. For a K = 1, 000-class problem such as ImageNet-1K classification, the continuous label space Y incurs an
encoding cost of r(Y) ≈ 15, 456 bits/vector, which dwarfs the log2 K = log2 1, 000 ≈ 10 bits needed for representing a
hard (one-hot) label, even surpassing the size of synthetic samples themselves.

A2. Hyperparameter Settings
Implementation Details. For synthetic dataset parameterization, we employ the C3 defaults [4]: L = 6 latent scales with
an upsampling kernel of size 8. We customize both the entropy and decoder networks to accommodate different datasets and
varying synthetic samples per class (spc). The entropy network is implemented by a multilayer perceptron, whose detailed
layer-by-layer specification is provided in Table A2. All hidden layers employ ReLU activations, and the final layer outputs
two values—µ, log σ—which parameterize the conditional Laplace distribution of each latent code. To enforce causality,
latent codes are processed in raster-scan order [7]. For each code m at scale l, we extract its causal context from a fixed-size
neighborhood of C previously encoded codes, experimenting with C ∈ {8, 16, 24, 32, 64} (see Table A2 for more details).
A single entropy network then processes all scales simultaneously by concatenating context tensors {c1, . . . , cL}, where
cl ∈ R(⌊

H

2l−1 ⌋×⌊ W

2l−1 ⌋)×C , to form c ∈ R(
∑L

l=1⌊ H

2l−1 ⌋×⌊ W

2l−1 ⌋)×C .
Fig. 2 in the main text depicts our decoder architecture, which comprises five convolution layers with hyperparameters

{D1, D2, D3}. Two residual connections link the last two convolutions. Following the guidelines of [4], we implement
eight distinct decoder configurations (see Table A1), where setting D2 = 0 indicates the identity mapping (i.e., no learnable
parameters) at that layer. ReLU is adopted as the nonlinear activation function. We further denote “slice size” as the number
of synthetic samples handled by each entropy or decoder network. By default, we allocate one network per class. However,
for CIFAR-10 with spc = 718, we set the slice size to 359, resulting in two slices per class.

For downstream classifiers, we follow FreD [8] and employ convolutional neural networks for both dataset distillation
and evaluation. The architecture comprises identical blocks, each containing a 3 × 3 convolution with 128 filters, instance
normalization, ReLU, and 2×2 average pooling (stride 2). A final linear layer produces the output logits. We configure three
blocks for 32× 32 datasets (i.e., CIFAR-10 and CIFAR-100), and five blocks for 128× 128 ImageNet subsets.

We use TM [1] as our default distillation loss, while supporting GM [14] and DM [13] identically. All experiments
use differentiable siamese augmentation [12] for data augmentation; zero-phase component analysis as a form of signal
whitening is only applied to CIFAR-10 at spc = 64 or 240. Hyperparameters for each loss generally follow those of FreD [8]
and DDiF [9] (see Table A2 for details), with synthetic minibatch sizes adjusted for higher spc in TM.
Training Protocols. In the initialization phase, we adopt the default warm-up schedule from C3 [4], setting the learning rate
to 0.01. The rate-distortion trade-off coefficient β is chosen per dataset and distillation loss. For instance, β = 10 when
applying the TM loss on ImageNet subsets, while β = 106 for both the GM and DM losses.

In the joint rate-utility optimization phase, training is carried out using the Adam optimizer at a fixed learning rate of
10−3. We run 15, 000 iterations for TM, 800 for GM, and 20, 000 for DM, respectively. Bit-budget enforcement is governed
by a two-stage schedule for the rate-utility coefficient λ: during the first half of training, a generally higher λ prioritizes
distillation performance; in the second half, we are inclined to decrease λ to strictly impose the bitrate constraint. In the
post-quantization phase, we enforce the mean squared error between the pre- and post-quantized synthetic samples to lie
within {5 × 10−5, 5 × 10−6, 5 × 10−7, 5 × 10−8}, then select the threshold that maximizes rate-utility performance for
the target bpc budget. In the evaluation phase, we train five independent classifiers for 1, 000 epochs and report the average
classification accuracy. For cross-architecture comparisons, we utilize FreD’s implementations [8], applying a fixed Adam
learning rate of 0.02 for AlexNet, VGG-11, ResNet-18, and 0.015 (with a dropout ratio of 0.01) for a variant of ViT-B. All
experiments are performed on NVIDIA A100 (4×) and A800 (4×) GPUs.

A3. Expanded Quantitative Results
We provide detailed performance comparisons across multiple datasets and distillation losses to underscore the generality
and efficiency of our joint rate-utility optimization method.

Table A3 supplements the raw data for the rate-utility curve in Fig. 1 of the main text.
Table A4 summarizes results on CIFAR-10 and CIFAR-100 over a range of bpc budgets. Under each constraint, our

method not only achieves state-of-the-art classification accuracy but also requires substantially fewer bits—for example, on
CIFAR-100 with a 120 kB budget, we attain superior accuracy using only 53 kB.

Table A5 extends this analysis by applying the TM loss [1] across four distinct backbone architectures (i.e., AlexNet,
VGG-11, ResNet-18, and a variant of ViT-B), confirming cross-architecture generalization.
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Table A1. Configuration of the decoder network across model variants, denoted by “v⟨depth⟩-⟨channels⟩,” where the suffix denotes the
network depth and first-layer output channels. D1 to D3 list the output channel counts for layers one through three, and the last column
gives the total number of trainable parameters.

Version D1 D2 D3 #Parameters

v4-40 40 0 3 571
v4-160 160 0 3 1,771
v4-240 240 0 3 2,571
v4-480 480 0 3 4,971
v4-960 960 0 3 9,771
v4-1200 1,200 0 3 12,171
v5-240 240 40 3 11,611
v5-320 320 40 3 15,371

Table A2. Overview of hyperparameter settings for different DD loss functions.

(a) Hyperparameter settings for the TM loss.

Dataset spc
TM Entropy Network Decoder Network Optimization

t1 t2 t
Synthetic

minibatch size Width Depth Version Slice Size β λ

CIFAR-10
64 60 392 1,960 256 16 4 v4-480 64 106 {2× 101}
240 60 392 7,840 410 16 4 v4-960 240 106 {102, 2× 102}
718 60 392 7,840 720 16 4 v4-1200 360 106 {2× 102}

CIFAR-100 48 60 392 7,840 256 16 4 v4-240 48 108 {3× 102}
120 40 392 9,408 960 16 4 v4-960 120 106 {1.5× 103}

ImageNet Subset

1 20 102 510 102 16 2 v4-40 1 10 {102, 103}
8 20 102 510 102 16 2 v4-160 8 10 {103, 8.5× 10}
15 20 102 510 102 16 2 v4-240 15 10 {103, 8.5× 10}
51 40 102 1,020 80 32 4 v5-240 51 10 {103, 8.5× 10}
102 40 102 1,020 80 32 4 v5-240 102 10 {103, 6.6× 10}

(b) Hyperparameter settings for the GM and DM losses.

Dataset ℓ spc Synthetic
batch size

Entropy Network Decoder Network Optimization

Width Depth Version Slice Size β λ

ImageNet Subset GM 96 960 32 4 v5-320 96 106 {2.8× 10−2, 1.2× 10−2}
DM 96 960 32 4 v5-320 96 106 {2× 101, 6.7× 10−1}

Table A6 reports averaged accuracies (± standard deviation) on the ImageNet subsets, when using the GM [14] and
DM [13] distillation losses under bpc = 192 kB with spc = 96, revealing consistent gains over vanilla baselines.

A4. Wall-Clock Time
We evaluate decoding speed on a single NVIDIA A100 80 GB GPU, averaged across 10, 000 runs. From Table A7, we find
that total latency grows roughly linearly with spc, but the slope varies by dataset due to the differences in the entropy and
decoder networks. For instance, increasing spc from 64 to 718 on CIFAR-10 raises average latency from 55.30 ms to 318.57
ms (5.8×), while on ImageNet an increase from 1 to 102 spc yields a 5.7× rise (51.95 ms to 295.87 ms). Notably, per-sample
latency improvements taper off at high spc: beyond spc = 51, ImageNet’s per-sample time only drops from 0.32 ms to 0.29
ms, and CIFAR-10 stabilizes at 0.04 ms past spc = 240, indicating hardware or algorithmic limits on batching efficiency.
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Table A3. Detailed experimental results on the Nette subset of ImageNet (128 × 128). Classification accuracies (%) are reported as
mean ± standard deviation.

Method spc #Parameters Per Class (×104) bpc (kB) Accuracy (%)

TM [1]

1 4.92 192.0 51.4±2.3

10 49.15 1,920.0 63.0±1.3

50 245.76 9,600.0 72.8±0.8

51 250.68 9,792.0 73.0±0.7

GLaD [2] – 4.92 192.0 38.7±1.6

H-GLaD [16] – 4.92 192.0 45.4±1.1

FRePo [17] – 4.92 192.0 48.1±0.7

– 49.15 1,920.0 66.5±0.8

HaBa [6] – 4.92 192.0 51.9±0.7

– 49.15 1,920.0 64.7±1.6

IDC [5] – 4.92 192.0 61.4±1.0

– 49.15 1,920.0 70.8±0.5

FReD [8]
8 4.92 192.0 66.8±0.4

16 9.83 384.0 69.0±0.9

40 49.15 1,920.0 72.0±0.8

SPEED [10] 15 4.92 192.0 66.9±0.7

111 49.15 1,920.0 72.9±1.5

NSD [11] – 4.92 192.0 68.6±0.8

DDiF [9]

1 0.10 3.8 49.1±2.0

8 0.77 30.1 67.1±0.4

15 1.44 56.4 68.3±1.1

51 4.92 192.0 72.0±0.9

510 49.15 1,920.0 74.6±0.7

697 245.55 9,591.2 75.2±1.3

TM-RUO (Ours)

1 2.31 3.2 49.2±1.2

8 17.71 8.4 66.4±1.6

15 33.08 18.2 69.2±1.5

51 112.98 101.7 74.5±0.8

102 224.36 179.7 76.5±0.7

A5. Expanded Qualitative Results
Figs. A1 to A6 showcase final synthetic samples optimized with the TM loss, whereas Figs. A7 and A8 juxtapose multiscale
latent-code visualizations and their decoded reconstructions using the GM and DM objectives. Each panel’s first row presents
initialization by “overfitted” image compression, the second row shows distilled images, and the last six rows display the
corresponding multiscale latent codes. Finally, Figs. A9 to A14 extend these visualizations across all six ImageNet subsets,
demonstrating consistently structured latent representations and sample synthesis.
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Table A4. Classification accuracies (mean ± standard deviation) on CIFAR-10 and CIFAR-100 under five different bpc budgets. The first
row (“Original”) shows accuracy when training on the original dataset. The budget rows give the compressed-size budgets (in kB) with the
corresponding number of synthetic spc (in parentheses).

Method CIFAR-10 CIFAR-100

12 kB 120 kB 600 kB 12 kB 120 kB

Original 84.8±0.1 56.2±0.3

TM [1] 46.3±0.8 65.3±0.7 71.6±0.2 24.3±0.3 40.1±0.4

FRePo [17] 46.8±0.7 65.5±0.4 71.7±0.2 28.7±0.1 42.5±0.2

IDC [5] 50.0±0.4 67.5±0.5 74.5±0.2 – –
HaBa [6] 48.3±0.8 69.9±0.4 74.0±0.2 – –
FreD [8] 60.6±0.8 70.3±0.3 75.8±0.1 34.6±0.4 42.7±0.2

RTP [3] 66.4±0.4 71.2±0.4 73.6±0.5 34.0±0.4 42.9±0.7

NSD [11] 68.5±0.8 73.4±0.2 75.2±0.6 36.5±0.3 46.1±0.2

SPEED [10] 63.2±0.1 73.5±0.2 77.7±0.4 40.4±0.4 45.9±0.3

HMN [15] 65.7±0.3 73.7±0.1 76.9±0.2 36.3±0.2 45.4±0.2

DDiF [9] 66.5±0.4 74.0±0.4 77.5±0.3 42.1±0.2 46.0±0.2

Method CIFAR-10 CIFAR-100

13 kB (64) 94 kB (240) 246 kB (718) 8 kB (48) 53 kB (120)

TM-RUO (Ours) 70.3±0.7 77.5±0.3 79.7±0.3 44.4±0.3 49.2±0.4

Table A5. Classification accuracies (mean ± standard deviation) on six 128×128 ImageNet subsets across different network architectures,
including AlexNet, VGG-11, ResNet-18, and a variant of ViT-B, evaluated under a bpc budget of ≤ 192 kB.

Classifier Method Nette Woof Fruit Yellow Meow Squawk

AlexNet

TM [1] 13.2±0.6 10.0±0.0 10.0±0.0 11.0±0.2 9.8±0.0 –
IDC [5] 17.4±0.9 16.5±0.7 17.9±0.7 20.6±0.9 16.8±0.5 20.7±1.0

FreD [8] 35.7±0.4 23.9±0.7 15.8±0.7 19.8±1.2 14.4±0.5 36.3±0.3

DDiF [9] 60.7±2.3 36.4±2.3 41.8±0.6 56.2±0.8 40.3±1.9 60.5±0.4

TM-RUO (Ours) 64.1±1.3 32.6±1.8 40.7±0.5 49.9±2.4 36.9±1.6 55.9±2.5

VGG-11

TM [1] 17.4±2.1 12.6±1.8 11.8±1.0 16.9±1.1 13.8±1.3 –
IDC [5] 19.6±1.5 16.0±2.1 13.8±1.3 16.8±3.5 13.1±2.0 19.1±1.2

FreD [8] 21.8±2.9 17.1±1.7 12.6±2.6 18.2±1.1 13.2±1.9 18.6±2.3

DDiF [9] 53.6±1.5 29.9±1.9 33.8±1.9 44.2±1.7 32.0±1.8 37.9±1.5

TM-RUO (Ours) 70.3±2.5 42.1±2.9 44.6±1.4 66.9±0.4 49.6±1.4 66.8±2.8

ResNet-18

TM [1] 34.9±2.3 20.7±1.0 23.1±1.5 43.4±1.1 22.8±2.2 –
IDC [5] 43.6±1.3 23.2±0.8 32.9±2.8 44.2±3.5 28.2±0.5 47.8±1.9

FreD [8] 48.8±1.8 28.4±0.6 34.0±1.9 49.3±1.1 29.0±1.8 50.2±0.8

DDiF [9] 63.8±1.8 37.5±1.9 42.0±1.9 55.9±1.0 35.8±1.8 62.6±1.5

TM-RUO (Ours) 70.6±1.2 39.9±1.8 44.6±0.6 67.1±1.5 47.8±0.9 66.1±1.6

Variant of ViT-B

TM [1] 22.6±1.1 15.9±0.4 23.3±0.4 18.1±1.3 18.6±0.9 –
IDC [5] 31.0±0.6 22.4±0.8 31.1±0.8 30.3±0.6 21.4±0.7 32.2±1.2

FreD [8] 38.4±0.7 25.4±1.7 31.9±1.4 37.6±2.0 19.7±0.8 44.4±1.0

DDiF [9] 59.0±0.4 32.8±0.8 39.4±0.8 47.9±0.6 27.0±0.6 54.8±1.1

TM-RUO (Ours) 57.5±1.2 29.5±0.3 41.4±1.1 48.2±0.8 28.0±0.9 55.8±1.4
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Table A6. Classification accuracies (mean ± standard deviation) on six 128× 128 ImageNet subsets for different utility losses, including
gradient matching (GM) [14] and distribution matching (DM) [13], evaluated under a bpc budget of ≤ 192 kB.

Method Nette Woof Fruit Yellow Meow Squawk Avg

GM
GM (Vanilla) [14]) 34.2±1.7 22.5±1.0 21.0±0.9 37.1*±1.1 22.0±0.6 32.0±1.5 28.1
GLaD [2] 35.4±1.2 22.3±1.1 20.7±1.1 – 22.6±0.8 33.8±0.9 26.9
H-GLaD [16] 36.9±0.8 24.0±0.8 22.4±1.1 – 24.1±0.9 35.3±1.0 28.5
IDC [5] 45.4±0.7 25.5±0.7 26.8±0.4 – 25.3±0.6 34.6±0.5 31.5
FreD [8] 49.1±0.8 26.1±1.1 30.0±0.7 – 28.7±1.0 39.7±0.7 34.7
DDiF [9] 61.2±1.0 35.2±1.7 37.8±1.1 – 39.1±1.3 54.3±1.0 45.5
GM-RUO (Ours) 67.2±1.1 33.1±1.1 37.0±1.0 58.9±1.4 42.0±1.7 58.6±1.6 49.5

DM
DM (Vanilla) [13] 30.4±2.7 20.7±1.0 20.4±1.9 36.0*±0.8 20.1±1.2 26.6±2.6 25.7
GLaD [2] 32.2±1.7 21.2±1.5 21.8±1.8 – 22.3±1.6 27.6±1.9 25.0
H-GLaD [16] 34.8±1.0 23.9±1.9 24.4±2.1 – 24.2±1.1 29.5±1.5 27.4
IDC [5] 48.3±1.3 27.0±1.0 29.9±0.7 – 30.5±1.0 38.8±1.4 34.9
FreD [8] 56.2±1.0 31.0±1.2 33.4±0.5 – 33.3±0.6 42.7±0.8 39.3
DDiF [9] 69.2±1.0 42.0±0.4 45.3±1.8 – 45.8±1.1 64.6±1.1 53.4
DM-RUO (Ours) 71.9±0.8 46.4±1.7 49.0±0.5 69.2±1.0 48.8±1.4 69.0±1.1 59.1

Table A7. Wall-clock time of synthetic dataset generation.

Dataset spc Average Time (ms) Time Per Sample (ms)

CIFAR-10
64 55.30 0.09

240 105.04 0.04
718 318.57 0.04

CIFAR-100 48 677.13 0.14
120 706.31 0.06

ImageNet Subset

1 51.95 5.19
8 52.32 0.65
15 60.58 0.40
51 161.51 0.32

102 295.87 0.29
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tench English springer cassette player chain saw church French horn garbage truck gas pump golf ball parachute

Figure A1. Visualization of final synthetic samples on the Nette subset of ImageNet.
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australian_terrier border_terrier samoyed rhodesian_ridgeback shih-tzu english_foxhound beagle golden_retriever dingo english_sheepdog

Figure A2. Visualization of final synthetic samples on the Woof subset of ImageNet.
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pineapple banana strawberry orange lemon pomegranate fig bell_pepper cucumber green_apple

Figure A3. Visualization of final synthetic samples on the Fruit subset of ImageNet.
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bee ladys slipper banana lemon corn school_bus honeycomb lion garden_spider goldfinch

Figure A4. Visualization of final synthetic samples on the Yellow subset of ImageNet.
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tabby_cat bengal_cat persian_cat siamese_cat egyptian_cat lion tiger jaguar snow_leopard lynx

Figure A5. Visualization of final synthetic samples on the Meow subset of ImageNet.
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peacock flamingo macaw pelican king_penguin bald_eagle toucan ostrich black_swan cockatoo

Figure A6. Visualization of final synthetic samples on the Squawk subset of ImageNet.
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tench English springer cassette player chain saw church French horn garbage truck gas pump golf ball parachute
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Figure A7. Visualization of synthetic samples on the Nette subset of ImageNet using the GM loss.
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tench English springer cassette player chain saw church French horn garbage truck gas pump golf ball parachute
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Figure A8. Visualization of synthetic samples on the Nette subset of ImageNet using the DM loss.
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tench English springer cassette player chain saw church French horn garbage truck gas pump golf ball parachute
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Figure A9. Visualization of synthetic samples on the Nette subset of ImageNet using the TM loss.
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australian_terrier border_terrier samoyed rhodesian_ridgeback shih-tzu english_foxhound beagle golden_retriever dingo english_sheepdog
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Figure A10. Visualization of synthetic samples on the Woof subset of ImageNet using the TM loss.
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pineapple banana strawberry orange lemon pomegranate fig bell_pepper cucumber green_apple
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Figure A11. Visualization of synthetic samples on the Fruit subset of ImageNet using the TM loss.
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bee ladys slipper banana lemon corn school_bus honeycomb lion garden_spider goldfinch
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Figure A12. Visualization of synthetic samples on the Yellow subset of ImageNet using the TM loss.
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tabby_cat bengal_cat persian_cat siamese_cat egyptian_cat lion tiger jaguar snow_leopard lynx
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Figure A13. Visualization of synthetic samples on the Meow subset of ImageNet using the TM loss.
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peacock flamingo macaw pelican king_penguin bald_eagle toucan ostrich black_swan cockatoo
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Figure A14. Visualization of synthetic samples on the Squawk subset of ImageNet using the TM loss.
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