
What Changed? Detecting and Evaluating Instruction-Guided Image Edits
with Multimodal Large Language Models

Supplementary Material

A. Difference Detection Training Dataset
Stage 1: Additional Details. To effectively train our differ-
ence detection model, we build our first stage on LVIS [22],
which provides a broad range of annotated objects. Given
that LVIS encompasses 1,723 distinct categories, inconsis-
tencies may arise during annotation, whereby annotators
might label the same or similar objects under different cate-
gories or overlook certain objects. To address our objective
of predicting missing objects in each pair, we filter them
using the open-vocabulary detector OWL-ViT [36]. OWL-
ViT is then tasked with verifying whether objects annotated
in the first image (but not in the second) are genuinely ab-
sent in the second image and vice versa, thereby preventing
erroneous ground-truth labels.

Moreover, considering the density of annotations in
LVIS, we further refine our collection by eliminating an-
notations that are overly small, specifically, those with at
least one dimension measuring less than 16 pixels. The final
dataset consists of 118k images with a total of 795k, 725k,
and 94k ADD, REMOVE, and EDIT operations respectively.
Stage 2: Additional Details. Building upon the previ-
ous stage, the second stage dataset is designed to refine
our model for detecting differences in edited images. The
dataset is constructed using LVIS annotations, applying spe-
cific filtering criteria to ensure data quality. In detail, we
sample a maximum of 4 objects per image. For each se-
lected object, we consider its segmentation mask and fil-
ter out records that cover less than 3% of the image area,
while the maximum allowed overlap between selected ob-
ject masks is 5%. As for the inpainting generation pipeline,
the Kandinsky 2.2 inpaint model [42] is employed with 100
diffusion steps and a guidance scale of 4.

The final dataset comprises a total of 97k images for
training and 19k images for testing. Within the training
set, each of the three operations (ADD, REMOVE, and EDIT)
is represented by approximately 33k instances to avoid un-
balanced predictions. Additionally, 19k images remain un-
changed. Similarly, in the test set, there are around 7k
instances for each of the three operations, along with 5k
images that remain unaltered. Finally, samples from both
datasets used in stage 1 and stage 2 are provided in Fig. 4.

B. Training Details
In each stage, the training of all the models is conducted
within the same experimental setting. For instance, we ap-
ply QLoRA with rank 64, scaling factor 16, and a dropout

rate of 0.1. Both difference detection and coherence esti-
mation fine-tuning employ 4-bit quantization and the paged
AdamW 8-bit optimizer [34].

For image encoding, images are always center-cropped
based on the smaller dimension to maintain a square as-
pect ratio. When employing Idefics3, images are internally
resized to 1,456 pixels and encoded in a list of 364-pixel
crops, generating a grid of 16 crops separately encoded. For
Qwen2-VL, the image is encoded using a bidimensional po-
sitional embedding. Image tokens are then compressed by
an MLP layer that encodes 2→ 2 adjacent tokens into a sin-
gle one. The input image resolution is kept at 1,456. For
mPLUG-Owl3, the images are directly encoded through a
SigLIP400m-384 [53].

Difference Detection. All stages of the difference detection
training use 8 NVIDIA A100 64GB GPUs. Both training
stages are conducted with a learning rate of 1→ 10→4 and a
total batch size of 8. In the first training stage, Idefics con-
verges after 9k training steps, with evaluations performed
every 1k steps. Differently, in the second training stage,
convergence is reached after 30k training steps, with evalu-
ations conducted every 5k steps. No image preprocessing is
applied in the first stage. During the second stage, however,
we observe that the model may be susceptible to artifacts
introduced by the inpainting model, which can compromise
its generalizability across different editing outputs. To re-
move the effect of these low-level imprints, during train-
ing, we apply random JPEG compression between 15% and
50% magnitude, following an established practice in deep-
fake detection [50]. At inference time, JPEG compression
is set at 33%.

Coherence Estimation. Training is performed on a single
NVIDIA A100 64GB GPU with a batch size of one and
a learning rate of 1 → 10→5. In this case, Idefics reaches
convergence at 550 training steps, with evaluations every
50 steps.

C. Evaluation Details
Difference Detection with Open-Vocabulary Detectors.
Standard object detection models like OWLv2 [37] and
Grounding DINO [33] must be adapted to perform differ-
ence detection, as they operate on single images indepen-
dently. To enable this, we first apply object detection sepa-
rately to the original and edited images using all the LVIS
classes as labels. The resulting detections are then com-
pared to identify differences.

REMOVEEDIT

ADD

Annotated Differences
ADD: Motorcycle; REMOVE: House

EDIT: Motorcyclist changed to motorcycle

ADD

REMOVE

Annotated Differences
ADD: Person;
REMOVE: Car

Image from LVIS

Prompt:
Remove xxx

REMOVE

EDIT

Annotated Differences
ADD: Snowboard; REMOVE: Snowboard

EDIT: Snowboard changed to red Snowboard

ADD

Image from LVIS

Annotated Differences
ADD: Pillow; REMOVE: Cat

EDIT: Luggage changed to Backpack

REMOVE

EDIT

ADD

Figure 4. Qualitative examples from the difference detection training datasets: the first row shows samples from the dataset used in stage
1, and the second row from the dataset employed in stage 2.

Given a detection in the original image: if a detection in
the edited image has an IoU greater than 0.5 and a different
label, it is classified as a EDIT difference. If no detection
in the edited image exceeds the IoU threshold, it is consid-
ered a REMOVE difference. Conversely, if a detection in the
edited image has no corresponding detection in the original
image above the threshold, it is labeled as an ADD differ-
ence. Finally, if two detections with the same label have an
IoU over the threshold, then no difference is found.

Difference detection with GLaMM. The GLaMM
model [41] is employed in a zero-shot setting as a standard
single-image object detector, and the algorithm described
previously is used for difference extraction in this case too.

D. Ablation Study on Localization
In this section, we build on the experiments in Tab 4 and
further motivate the relevance of the localized output of
DICE. Indeed, localization allows the evaluator model to
focus on relevant regions and enhances interpretability. To
prove this, we employ Gemma3-27B [48] and Qwen2.5-
VL-32B [2] in a fully zero-shot setting, measuring correla-
tion with human ratings with and without DICE detections
in the prompt. For Prompt Adherence, we provide bounding
boxes of differences labeled as “coherent”; for Background
Preservation, we use boxes predicted as “non-coherent”.
These boxes are overlaid on the image, and their corre-
sponding textual descriptions are appended to the prompt,
following the strategy of our coherence evaluator. As shown
in Tab. 5, adding localization significantly boosts correla-
tion with human evaluations. This confirms that ground-

Gemma3-27B Qwen2.5-VL-32B
ω ωs ε ω ωs ε

Background Preservation

w/o DICE detections 13.9 12.2 10.5 20.1 20.3 17.5
w/ DICE detections 36.2 36.3 32.8 37.3 35.9 31.5

Prompt Adherence

w/o DICE detections 31.0 27.0 23.0 67.7 70.2 59.8
w/ DICE detections 32.8 34.3 30.3 67.9 70.6 59.5

Table 5. Impact of localization on human correlations.

ing detected objects enables MLLMs to better interpret and
reason about visual edits. Notably, the substantial gains
in Background Preservation suggest that MLLMs evalua-
tors may be biased toward verifying whether the instructed
change occurred, while neglecting unintended modifica-
tions. Our method explicitly identifies such unintended
changes during the detection phase, leading to more robust
evaluations.

E. User Study
To evaluate the performance of instruction-based image
editing models, we conducted a user study in which partic-
ipants assessed edited images based on prompt adherence
and background preservation.
Data Generation. The editing models used for user study
data generation are set according to their default configu-
ration. In particular, for InstructDiffusion [18] the image
guidance scale is set to 1.25 and the text guidance scale is
set to 5, while for all the other models we use 1.5 and 7
respectively. For HIVE [55] and InstructDiffusion the num-
ber of inference steps is 100, while for all the other models

Figure 5. User study interface displaying the original and the
edited image alongside the editing prompt.

we set the inference steps to 20.
Participants rated the degree to which the requested edit

was applied on a scale from 1 to 5: not applied at all,
slightly applied, moderately applied, well applied, and per-

fectly applied. Similarly, they evaluated the preservation
of background elements using another scale from 1 to 5:
changed completely, moderately altered, mostly preserved,
nearly fully preserved, and preserved completely. The study
was conducted through an interactive interface that allowed
participants to compare the original and the edited image
while reading the prompt. Fig. 5 illustrates the interface
used in the study.

F. Additional Qualitative Results
Fig. 6 illustrates a wide range of successful edits handled
by DICE across diverse scenarios, featuring highly precise
bounding boxes around the modified elements. In several
examples, the system accurately detects color changes (e.g.,
altering the color of a bird or an umbrella) and clearly dis-
tinguishes added objects, such as a watermelon or a neck-
tie. The pipeline also robustly identifies removed elements,
whether it is a coffee table or a giraffe, and captures more
subtle edit operations, for instance replacing a bird with a
boy or a cat with a dog. These qualitative results highlight
how DICE maintains spatial accuracy and class awareness
when performing additions, removals, and edits, thereby
demonstrating its adaptability to different editing requests.

Additionally, the coherence evaluator provides clear,
step-by-step reasoning for each detected change, explaining
why it is coherent or not. For example, as shown in Fig. 7,
in the “change the color of the rose to blue” prompt, the

system points out that “cyan” is still a valid shade of blue
and correctly labels the edit as coherent. Likewise, when
asked to “add a basketball to the top of the car”, it con-
firms not only that the basketball has been introduced but
also that it is located precisely where the prompt requires
– on top of the car. These reasoned explanations highlight
the transparency of our pipeline, helping users understand
which aspects of the prompt were fulfilled and why certain
edits might fall short of the requested modifications.

G. Limitations
DICE can occasionally exhibit inaccuracies in detected dif-
ferences, as shown in Fig. 8, that can end up affecting the
coherence estimation. For instance, in the first example,
changing the left hat to white actually matches the prompt.
However, the pipeline labels the detected edit as “fedora”,
which confuses the coherence evaluator into classifying it
as non-coherent. A similar problem arises in the second im-
age, where the correct recoloring of the dog to brown is la-
beled as “beige puppy”, causing confusion – especially be-
cause the new color of the dog blends into the background.

Another failure can occur when the coherence evalua-
tor is overly strict. In the “replace dog with watermelon”
example, the editing model does replace the dog with a wa-
termelon, yet the coherence evaluator rejects the result be-
cause it expects a total transformation. Similarly, in “re-
place boy with girl,” the difference detector notes that a per-
son has been edited but fails to recognize the new person
as female, and the coherence evaluator does not correct this
oversight, causing it to label the modification as incoherent
even though it actually meets the prompt requirements.

Further ambiguities in the prompt can lead to inaccurate
predictions. Indeed, sometimes, the prompt does not spec-
ify all the elements needed to produce a univocal decision,
especially when it is unclear whether the prompt specifies
an addition or a substitution of elements in the scene.

Custom System Prompt:
You are a system that detects differences between two images.

- Extract the elements that are changed in the second image with respect to the first one.
- Create a new entry for each distinct change.
- For each entry, use the following format:
"<CHANGE COMMAND>: <CHANGED ELEMENT>, (<BOUNDING BOX>)"

CHANGE COMMAND:
- ADD: If a new element appears in the second image that was not present in the first.
- REMOVE: If an element from the first image is missing in the second.
- EDIT: If an element in the second image is different but in the same location as an element
in the first image.

CHANGED ELEMENT: Describe the element that has changed.

BOUNDING BOX: Use normalized coordinates [x0, y0, x1, y1] for the changed element position
in the second image, where (x0, y0) is the top-left corner, and (x1, y1) is the bottom-right
corner. The coordinates should be scaled between 0 and 1, with 0 representing one edge of
the image and 1 representing the opposite edge.

Table 6. Prompting template for the difference detection stage of the DICE pipeline.

Custom System Prompt:
You are evaluating if a specific change detected by an AI vision model matches the request in
the original edit prompt.

Task
Determine if the detected change, as described and bounded by the provided colored bbox,
matches the request in the original edit prompt.
A match is valid only if the localized detected change is 100% compatible with the requested
prompt.
Any unwanted modification of the original image (even small) should avoid a match.

Context
- The original image and the edited image are provided, in this order. The edited image is
the original with some changes applied. Focus only on the area specified by the bbox in the
detected change.
- Another AI model has detected a change in the image, including its bbox.
- ADD: An object is only added in the edited image (on the background).
- EDIT: An object is substituted with another one in the edited image.
- REMOVE: An object is removed in the edited image.
- Be strict: An EDIT means that an object has been removed and substituted with another one,
ensure nothing was removed unless explicitly stated in the prompt. If an object has been
removed unexpectedly, then you should say NO.

Example Response
- Reasoning: <REASONING>
- Decision: "YES" or "NO"

User Prompt:
Instructions
1. The original edit prompt is: {SUBSTITUTE PROMPT}
2. The detected change to evaluate is: {SUBSTITUTE CHANGE}
3. Use only the text and the observations from the specified bbox area (colored) in both the
original and edited images to decide if the specific detected change aligns with the original
edit prompt.

Table 7. Prompting template for the coherence estimation stage of the DICE pipeline.

Detected Differences
REMOVE: bear

Detected Differences
EDIT: bird changed to red bird

Detected Differences
EDIT: vase changed to green vase

Detected Differences
REMOVE: person

Detected Differences
EDIT: apron changed to magenta apron;

ADD bow

Detected Differences
ADD: watermelon

Detected Differences
EDIT: computer monitor changed to orange

laptop computer

Detected Differences
REMOVE: coffee table

Editing Prompt:
Add a boy to the

image

REMOVE

EDIT

Editing Prompt:
Delete the table

Editing Prompt:
Replace

computer with
orange

Editing Prompt:
Replace dog

with watermelon

EDIT

Editing Prompt:
Change the color

of the woman's
pinafore to red

Editing Prompt:
Change the
color of the

apple to green

Editing Prompt:
Replace bird

with strawberry

Editing Prompt:
Remove the

brown bear from
the image

EDITREMOVE

EDIT

ADD

ADD

REMOVE

Detected Differences
EDIT: stop sign changed to yield sign

EDIT

Editing Prompt:
Change the

 stop sign into
an exit sign

Detected Differences
EDIT: cat changed to dogs

Editing Prompt:
Replace cat with

dog

EDIT

Detected Differences
REMOVE: giraffe

Editing Prompt:
Remove the

giraffe from the
image

REMOVE

Detected Differences
EDIT: umbrella changed to indigo umbrella

Detected Differences
REMOVE: bicycle

Detected Differences
REMOVE: bucket

Detected Differences
EDIT: peacock changed to white bird

Editing Prompt:
Remove the

peacock from
the image

Editing Prompt:
Remove the

bucket from the
image

Editing Prompt:
Let the umbrella

turn blue

REMOVE

EDIT

REMOVE

EDIT

Editing Prompt:
Add a horse to

the image

Detected Differences
EDIT: horse change to donkeys; ADD: horse

ADD

EDIT

Detected Differences
EDIT: top changed to yellow polo shirt; EDIT: short
pants changed to track pants; REMOVE: frisbee

Detected Differences
EDIT: frisbee changed to beige frisbee

Detected Differences
ADD: stop sign

Detected Differences
EDIT: dog changed to brown dog

Detected Differences
EDIT: computer monitor changed to green monitor

Detected Differences
ADD: parrotfish

Detected Differences
EDIT: bird changed to small child

Detected Differences
REMOVE: giant panda

Editing Prompt:
Change the

color of the dog
to brown

EDIT

Editing Prompt:
Remove the

panda from the
image

Editing Prompt:
Replace bird

with boy

Editing Prompt:
Change the
color of the

parrot to yellow

Editing Prompt:
Let the laptop
have a green

web page

Editing Prompt:
Add a stop sign

to the image

Editing Prompt:
Change the

frisbee to a bone

Editing Prompt:
Change the shirt

EDIT

ADD

REMOVE

EDIT

EDIT

ADDEDIT

EDIT

REMOVE

Figure 6. Additional qualitative results. Each instruction-based edit shows the original image (left) and the edited version (right), alongside
the given prompt.

Reasoning
The prompt requires an apple to be

added to the top of the street sign. The
detected change indicates that an apple
has been added, but it is not on the street

sign. Therefore, the detected change
does not match the original prompt.

Answer: NO
Editing Prompt:

Add an apple to
the top of the

street sign

ADD

Detected Differences
ADD: apple

Reasoning
The original prompt requests a change of

the British flag to a Canadian flag. The
detected change involves editing the
flag from a British one to a maple leaf,

which is the symbol of the Canadian flag.
The change from a British flag to a maple
leaf is not a change to a Canadian flag,

as the Canadian flag consists of a red
maple leaf within a red and white

background, not just a single red maple
leaf. Therefore, the detected change
does not match the original prompt.

Answer: NO

Editing Prompt:
Change the British

flag into a
Canadian flag

Detected Differences
EDIT: flag changed to maple leaf

Reasoning
The original prompt requests a color

change of the rose to blue. The detected
change indicates that the color of the

rose has been changed to cyan, which is
a shade of blue. The change is specific to

the rose, as it is the only object in the
image that has been altered. Therefore,

the detected change matches the
original prompt as it fulfills the requirement

of changing the rose's color to blue.

Answer: YES

Editing Prompt:
Change the color
of the rose to blue

Detected Differences
EDIT: flower arrangement changed to

cyan flower arrangement

Reasoning
The original prompt requests a color
change of the parrot to yellow. The

detected change indicates that the bird's
color was changed to yellow, which
aligns with the prompt's requirement.

Therefore, the detected change matches
the original prompt.

Answer: YES

Editing Prompt:
Change the color

of the parrot to
yellow

Detected Differences
EDIT: parrot changed to yellow parrot

Reasoning
The original prompt requests the removal
of a dog from the image. The detected

change, however, involves the removal of
a frisbee, which is not the subject of the
prompt. The prompt specifically asks for

the removal of a dog, not a frisbee.
Therefore, the detected change does not

match the original prompt.

Answer: NO

Editing Prompt:
Remove the dog
from the image

Detected Differences
REMOVE: frisbee

Reasoning
The prompt requires the addition of a
basketball to the top of the car. The
detected change indicates that a

basketball has been added to the top of
the car, which is the exact location

specified in the prompt. Therefore, the
detected change matches the original

prompt.

Answer: YES

Editing Prompt:
Add a basketball

to the top of
the car

ADD

Detected Differences
ADD: basketball

EDIT

EDIT

EDIT

REMOVE

Figure 7. Examples illustrating the reasoning of the coherence evaluator that justifies its ‘YES’ or ‘NO’ decisions. Each box pairs a
detected difference with an explanation of why the edit either fulfills or fails the user’s request, highlighting the ability of the pipeline to
handle both spatial and semantic context.

Detected Differences
EDIT: dog changed to watermelon dog

Detected Differences
EDIT: person changed to pink person

Detected Differences
EDIT: bowler hat changed to fedora;

EDIT: hat changed to white hat

Detected Differences
EDIT: dog changed to beige puppy

Detected Differences
ADD: beer bottle

Detected Differences
ADD: toy; REMOVE: dog

REMOVE

EDIT

Editing Prompt:
Add a cat to the
right of the dogs

Editing Prompt:
What if the woman

was holding a
bottle of wine?

Editing Prompt:
Let the dog be

brown

EDIT

Editing Prompt:
Make the hats

white

Editing Prompt:
Replace boy

with girl

Editing Prompt:
Replace dog

with watermelon

EDIT

ADD

ADD

Reasoning
The original prompt requests a replacement of the

dog with a watermelon. The detected change
indicates that the dog has been edited to look like
a watermelon, but the prompt specifically requires

the dog to be replaced with a watermelon, not
edited to look like one. Therefore, the detected

change does not match the original prompt.

Answer: NO

Reasoning
The original prompt requests a replacement of a

boy with a girl. The detected change involves
editing a person from a boy to a pink person.

While the prompt specifically asks for a gender
change from boy to girl, the detected change

does not specify the gender of the person being
changed. Therefore, the detected change does
not fully match the original prompt as it does not

ensure the gender change from boy to girl.

Answer: NO

EDIT

EDIT

EDIT

Figure 8. Failure cases where detection errors may impact coherence evaluation, potentially leading to misclassifications. Inaccurate
identification of edits can introduce ambiguity for the coherence evaluator, while strict coherence criteria might occasionally reject valid
changes, highlighting the interdependence of both stages.

