Large Learning Rates Simultaneously Achieve
Robustness to Spurious Correlations and Compressibility

Supplementary Material

In this document, we present in Sec. A an extended re-
view of the preceding research to contextualize our paper’s
motivation and findings. Building on this, Sec. B we high-
light how our findings extend and improve upon previous
literature, and point toward fruitful future research direc-
tions. After providing additional details regarding our ex-
periment settings in Sec. C, we provide additional results
and statistics regarding the main paper’s findings in Sec. D.
Lastly, Sec. E reviews our attribution visualization method-
ology, and provides extensive additional visual evidence for
our claims.

A. Extended Related Work

A large amount of recent work on spurious correlations
(SCs) have focused on the “default” tendency of neural net-
works, trained under gradient-based empirical risk mini-
mization (ERM), to exploit simple features in the training
datasets at the expense of more complex yet robust/invariant
ones. These include [4], who highlight the overreliance of
vision models on background information; [67], who em-
phasize the “simplicity bias” of neural networks in prefer-
ring simple features over more complex and informative
ones, and [22], who emphasize the tendency of neural net-
works in engaging “shortcut learning” in various modalities
of application. Ensuing research proposed several explana-
tions for this phenomenon. For example, [54, 59, 65] high-
light the inductive bias of a maximum margin classifier as
the primary reason for the exploitation of spurious features.
Alternatively, [54, 57] emphasize the dynamics of gradient-
based learning in creating this effect, where early adoption
of simple (and spurious) features harms the later learning of
more complex and more informative features.

Building on diagnoses, such as those mentioned above,
for the cause of this unintended learning of spurious fea-
tures, other research propose interventions to mitigate this
problem. For example, [59] propose new losses that op-
timize for a uniform margin solution rather than a max-
margin solution. On the other hand, [45, 56] propose two-
stage methods that reweight the dataset by deemphasizing
samples that are learned earlier, and [74] discourage neural
network to produce representations predictive of the label
early in the neural network. Other methods assume access
to spurious feature labels at training time, and exploit these
in various ways to improve robustness [28, 64]. While to
our knowledge no previous research systematically investi-
gates the effect of LR on generalization under SCs (and in
relation to compressibility), some previous research hint at

the outsized impact of LR on such behavior. [43] exam-
ine the effect of large LRs on feature learning and gener-
alization, without explicitly addressing the implications in
an OOD generalization context. While [58] speculate about
the potential effects of LR tuning on OOD generalization,
[28] empirically find that LR is most likely to affect robust-
ness to SCs, and [59] speculate that large LRs might lead
to improved performance due to inability of models trained
thereunder to approximate a max-margin solution.

While previous research showed a positive relationship
between compressibility and generalization through theo-
retical and empirical findings [2, 3, 5, 72, 73], it is much
less clear how well this applies to OOD generalization. In-
deed, existing research provides at best an ambivalent pic-
ture regarding the simultaneous achieveability of general-
ization, robustness, and compressibility [14, 16, 18, 77].
Various studies have highlighted the impact of large LRs
on generalization [40, 43, 53], model compressibility [3],
and representation sparsity [1]; making it a prime candi-
date for further investigation regarding its ability to facil-
itate compressibility and robustness in tandem. [29] point
out how large LRs in early training prevent the iterates from
being stuck in narrow valleys in the loss landscape, where
the curvature in certain directions is high. [40, 53] point out
the importance of large LRs in early training, where basin-
jumping behavior leads to better generalizing and/or flatter
minima [30]. While [1, 43, 85] focus on the effect of large
LRs on feature learning, [63] demonstrate the crucial role
of spurious / opposing signals in early training, and how
progressive sharpening [8, 78] of the loss landscape in the
directions that pertain to the representation of these features
lead to the eventual down-weighting of such non-robust fea-
tures. [63] further observe that this is due to discrete nature
of practical steepest ascent methods (GD, SGD), as it is not
observed in gradient flow regime, suggesting learning rate
as a prime candidate for modulating this behavior.

B. Extended Discussion of Our Contributions

In this paper, we demonstrate through systematic experi-

ments the unique role large learning rates (LRs) in simulta-

neously achieving robustness and resource-efficiency. More
concretely, we demonstrate that:

* Large LRs simultaneously facilitate robustness to SCs
and compressibility in a variety of datasets, model archi-
tectures, and training schemes.

* Increase in robustness and compressibility is accompa-
nied by increased core (aka stable, invariant) feature uti-
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Figure 14. Visualizing attributions on a CIFAR-10 dataset with ResNet18 models using Integrated Gradients (left) and DeepLift (right).

—e— Test Accuracy
—#— Prunability _
Act. Comp.

—o— Test Accuracy
Avg. CSI
—— Class Sep.

1072 107t 1072 1071
Learning Rate (n) Learning Rate (n)

Figure 15. (Left) Effects of learning rate on OOD performance

(unbiased test acc.), network prunability, and representation prop-
erties with the moon-star dataset.

lization and class separation in learned representations.

e Large LRs are unique in consistently achieving these
properties across datasets compared to other interven-
tions, and can be combined with explicit regularization
for even better performance.

» Large LRs have a similar effect in naturalistic classifica-
tion tasks by addressing hidden/rare spurious correlations
in the dataset.

* Confident mispredictions of bias-conflicting samples play
an important role in conferring robustness to models
trained under large LRs.

We now discuss further implications of our results in
light of recent findings in the literature.
Inductive biases of SGD. Our findings call into question
the assumptions regarding the inductive biases of “default”
SGD. We find that LR selection can change the unbiased
test set accuracy by up to ~50% (See Table S1). This has
two major implications: (i) Any method that relies on as-
sumptions regarding default behavior of neural networks
(e.g. [45, 56]) should consider the fact that the said defaults
can vary considerably based on training hyperparameters,
including but not limited to LR. (ii) Any proposed interven-
tion for improving robustness to SCs should consider uti-
lizing large LRs as a strong baseline against the proposed
method.
Overparametrization and robustness. We observe a
strong interaction between overparametrization and LR in
robustness to SCs. Our findings show that (Table S1) the
range of test accuracies that can be obtained by tuning LRs
increase as the models get more expressive. For example,

in Colored MNIST dataset, while the difference between
the highest vs. lowest performing models is ~4% for a
fully connected network (FCN), this increases to ~23% for
ResNet18 and ~31% for ResNet50. This implies that while
overparametrization indeed seems to play an important role
in robustness to SCs as suggested by some previous work
[65] (cf. [59]), this needs to be considered in the context of
central training hyperparameters, as they can modulate this
vulnerability to a great degree.

Mechanism of LR’s Effects. As noted in the main paper,
interventions developed to mitigate the effect of spurious
correlations constitute two groups based on whether they
assume access to spurious feature labels/annotations. Those
that assume this, exploit this information to improve worst
group or unbiased test set performance [28, 64]. In the ab-
sence of group annotations, other methods rely on assump-
tions about the nature of the spurious features, data distri-
bution, and the inductive biases of the learning algorithms
[45, 59, 74]. We highlight that the proposed mechanism in
this paper, where large LRs cause BC sample losses to dom-
inate acts as an implicit re-weighting, which makes it akin
to two-stage methods like Learning from Failure [56]. This
further highlights the importance of establishing the effects
of core hyperparameters on robustness to spurious correla-
tions - not only for a deeper understanding of the inductive
biases of gradient-based learning under overparametriza-
tion, but also as strong baselines to compare against newly
developed methods.

As noted above, [59] argue that max-margin classifica-
tion inevitably leads to exploitation of spurious features,
and LRs might protect against SCs by creating models
closer to a uniform margin solution. To support their con-
jecture, they present evidence that shows average losses in-
curred from bias-aligned (BA) vs. bias-conflicting (BC)
samples are closer in large LR models compared to small
LR models. However, we find that their findings do not gen-
eralize across different data distributions. Computing avg.
loss for BA samples / avg. loss for BC samples, we find
that in both Colored MNIST and Double MNIST datasets,
low LR models produce average losses that are closer in ra-
tio (3.9 x 1073 vs. 3.4 x 1073 in Colored MNIST and
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Figure 16. Effects of LR on OOD performance (unbiased test acc.), network prunability, and representation (activation) compressibility in
Corrupted CIFAR-10 dataset. z-axes correspond to learning rate (1), y-axes are normalized within each figure for each variable.
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Figure 17. Effects of learning rate on representation (activation) statistics for semi-synthetic datasets. y-axes are normalized within each

figure for each variable.

9.5 x 1073 vs. 7.4 x 1076 in Double MNIST). This high-
lights the importance of testing such claims across diverse
settings, and emphasizes the need for novel and systematic
explanations for the effect of large LRs on robustness to
SCs.

Compressibility and generalization. [1] argue that large
LRs create models with sparse representations. Our find-
ings support their claim across diverse settings. However,
we also observe that LRs’ effects on unbiased test accu-
racy and network compressibility (i.e. prunability) pre-
cede that of activation sparsity (i.e. there are LRs that are
large enough to increase test accuracy and prunability but
not large enough to increase representation sparsity). This
strongly implies that the representation sparsity is a down-
stream effect of large LRs, rather than being a mediator of
generalization and network compressibility. On the other
hand, our findings include initial evidence for wide minima
[30] found by large LRs to be associated with increased core
feature utilization. Examining the interaction of parameter
and representation space properties produced by LRs (see
e.g. [63]) is a promising future direction for understanding
the inductive bias of large LRs and SGD in general.

C. Further Details on Experiment Settings

We use Python programming language for all experi-
ments included in this paper. For experiments with semi-
synthetic, realistic SC, and naturalistic datasets we use
the versions of ResNetl8, ResNet50, Wide ResNet101-2,
Swin Transformer (tiny) as included in the Python package
torchvision, as well as a FCN with two hidden lay-
ers of width 1024, ReLU as the activation activation func-
tion, and with no bias. We also use a CNN with a similar
architecture to VGG11 [69], with a single linear layer fol-
lowing the convolutional layers instead of three, and this
version includes no bias terms. Due to the worse default
performance of FCNs in the more difficult semi-synthetic
datasets MNIST-CIFAR and Corrupted CIFAR-10, we in-
crease bias-conflicting ratio p to 0.25, and increase network
width to 2048 for these datasets. The synthetic dataset ex-
periments have been conducted with an FCN of two hidden
layers and 200 width.

For Colored MNIST and Corrupted CIFAR-10 we use
the train/test splits from the original papers [45]. Double
MNIST and MNIST-CIFAR are created using the canoni-



cal splits of these datasets. The training/test splits for these
datasets are 60000/10000, 50000/10000, 60000/10000, and
50000/10000, respectively. While we use the original splits
for CelebA and Waterbirds datasets, we use a 10000/10000
split for the synthetic parity dataset. The learning rate
ranges for the experiments are provided in Tab. 1 and Tab. 2,
while all experiments included a batch size of 100, except
for experiments with Swin Transformer, where we utilize
a batch size of 16. For computing activation statistics, we
obtain the post-activation values for the penultimate layer,
and compute the compressibility values for 1000 randomly
sampled input from the test set, and present the average of
these values.

The experiments in this paper were run on 4 NVIDIA
A100-PCIE-40GB GPUs for 400 total hours of computa-
tion. We will make our source code public upon publication
to allow for the replication of our results.

D. Additional Results and Statistics
D.1. Proof of Proposition 1

Proof 1 Let y and ' for the correct and incorrect classes
for a sample, i.e. b = y' for bias-conflicting samples, and
b = y otherwise. For the mispredicted (bias-conflicting)
examples, let fw[y'] — fwly] = B > 0. This implies the
following softmax () output for y
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proving Eq. (1).

D.2. Additional Theoretical Results

To investigate the effects of mispredicted bias-conflicting
samples on the gradients of subnetworks that rely on core
vs. spurious features, we first define bias-decomposable
networks.

Definition 1 f, is called a bias-decomposable network if
fw(x) = fo(x)+ fs(X)+ fr(x). Here, fc is the core feature
subnetwork, fo(x)[y] — fe(x)[b] > 0 with equality iff y = b.
fe(x) is assumed to have converged to a stable decision
making rule, i.e. V(fe(x)[y] — fe(x)[b]) = 0. In contrast,
fs is the spurious feature subnetwork, fs(x)[y]— fs(x)[b] <
0 with equality iff y = b. f. is the remainder subnetwork
that does not conform to the behavior described for f¢, fs.

Before discussing the motivation for this idealization, in
the following proposition, we investigate how the gradient
norms for core and spurious subnetworks scale based on this
definition and the results in the main paper.

Proposition 2 Assume fy, is bias-decomposable network.
If fw predicts according to the spurious decision rule, i.e.
b = argmax; fw(x)[j], then for some a > 0, as the logit-
scaling factor k — oo:
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for some o > 0, where || - || stands for Frobenius norm.
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Proof 2 The softmax probability w; for a class j is given
by:
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With some abuse of notation, the gradient of the loss { can
be expressed as:
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where §;, is the Kronecker delta, defined as:
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For bias-conflicting samples, i.e. x € Qy, as k — o0,

the softmax probability m, — 1 and m; — 0 for j # b. The
gradient for the core feature subnetwork converges to:

where z; = kf,,(x)]i] )
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with the latter due to Definition 1. Note that for the spurious
feature subnetwork Eq. (13) implies that the gradient norm
scales linearly with k:

IV sle|l = O(k) (15)

For the correctly classified bias-aligned samples with
margin «, the gradient norms for both subnetworks are
scaled by this vanishing factor:

|V eloall = O(ke™ ) (16)
|V sloal| = O(ke™ ) (17)

As we sum the norms over the minibatch £ = Qp. U Qpq,
the total spurious gradient norm (numerator) is:
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The total core gradient norm (denominator) is:
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The final ratio is the ratio of their asymptotic behaviors:
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Note that although the decomposition in question is an
idealization, it follows in line of previous work that demon-
strate such modularity [32], and similar decompositions
have been utilized in related research previously [60]. How-
ever, note that our assumption regarding the stability of the
core vs. spurious subnetworks differ from that of [60], who
assume a Bayes-optimal, stable spurious subnetwork. Our
assumption is motivated by our empirical observations. In
Fig. 18 (top), we examine two ResNetl8 models trained
on Colored MNIST dataset, and investigate their learned
representations, based on the pooled outputs of the last
layer convolution filters. We compute the CSI - BSI val-
ues for each filter/neuron at different points in the train-
ing. Assume we categorize neurons for which CSI > BSI
as “class-dominant”, and ‘“bias-dominant” otherwise. We
then ask, “At iteration ¢, what percentage of the neurons
that were class dominant remained class-dominant by the
end of training, and what percent of the neurons that were
bias-dominant remained so?” As the results show, for high
learning rate (n = 0.1 vs. n = 0.001), after iteration
~ 10 the overwhelming majority (not infrequently 100%)
of the neurons who were class-dominant remained so. This
is not true for the bias-dominant neurons. Note that this
is not explained solely by the final ratio of class-dominant
neurons: 55.4% vs 85.9% for the two models respectively,

which falls short of explaining the behavior observed. To
provide a more microscopic examination of this, in Fig. 18
(bottom) we examine how neuron-specific gradients impact
spurious feature utilization (computed through feature attri-
bution) within that neuron, from a high LR (n = 0.1) ex-
periment within our FCN + Colored MNIST setting. The
updates clearly show that the increasing spurious feature
utilization is “reset” by a large gradient update, driven pre-
sumably by mispredictions from bias-conflicting samples.
We consider further examination of these phenomena as an
important future research direction.
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Figure 18. (Top) Ratio of class-dominant vs. bias-dominant neu-
rons that survived as such by the end of training. (Bottom) Exam-
ining the impact of large gradient updates on feature attributions.

D.3. Value Ranges for Figures

Given that our figures depict multiple variables at the same
time, and the results are normalized according to experi-
ments to illuminate the patterns that LR and other interven-
tions create, we present the min. and max. values the inde-
pendent and dependent variables take in Tab. 1 and Tab. 2.

D.4. Additional Experiment Results

Here we present additional experimental results that were
omitted in the main paper due to space concerns. Fig. 15
present our results with the synthetic moon-star dataset,
Fig. 16 presents our results with the Corrupted CIFAR-10
dataset, Fig. 19 presents our results with the Waterbirds
dataset, and Fig. 20 includes additional results for com-
paring the effects of various hyperparameters and regular-
ization methods. Moreover, Fig. 21 and Fig. 22 provide a
more in-depth look at the performance of models in terms of
unbiased test accuracy under various pruning ratios, using
column and magnitude pruning respectively.

To show that our results are not limited to training using
SGD with a constant LR, we present qualitatively identi-
cal experiment results in Fig. 23 using the Colored MNIST
dataset and ResNet18 model, where the initial learning rate
(z-axis) is multiplied by 0.1 after 1000th iteration. Similar
results using Adam optimization algorithm are presented in
Fig. 24. Additionally, using the same setting, in Fig. 25 we



Table 1. Minimum and maximum values for each dataset-model combination included in our main experiments.

Dataset Model LR Test Acc. Prunability Act. Comp. Avg. CSI Class Sep.

Min. Max. Min. Max. | Min. Max. | Min. Max. | Min. Max. | Min. Max.
MNIST-CIFAR | FCN 0.001 0.01 35.247 35369 | 0.930 0.940 | 0.191 0.215 | 0.108 0.136 | 0.13  0.143
MNIST-CIFAR | CNN 0.001 0.2 24.507 41.717 | 0.326 0902 | 0.173 0.513 | 0.079 0.225 | 0.049 0.149
MNIST-CIFAR | ResNetl8 0.001 0.25 26.233 47513 | 0.311 0.737 | 0.294 0.343 | 0.225 0.371 | 0.115 0.255
MNIST-CIFAR | ResNet50 0.005 0.1 23.287 34.358 | 0.378 0.515 | 0.25 0.34 | 0.143 0.25 | 0.065 0.143
MNIST-CIFAR | Wide ResNet101-2 | 0.005 0.1 24.855 33.537 | 0418 0.522 | 0.252 0.34 | 0.166 0.247 | 0.082 0.149
CelebA Swin Transformer le-07  0.0001 | 40.889 48.21 | 0.344 0.609 | 0.265 0.584 | 0.122 0.305 | 0.06 0.164
Colored MNIST | FCN 0.001 0.5 72,727  76.11 | 0.935 0.968 | 0.285 0.389 | 0.243 0.381 | 0.291 0.387
Colored MNIST | CNN 0.01 0.35 88.2 91.48 | 0.532 0931 | 0372 0.643 | 0.302 0.576 | 0.376 0.692
Colored MNIST | ResNetl8 0.001 0.25 | 68343 91.543 | 0.252 0.771 | 0.381 0.527 | 038 0.63 | 0.212 0.635
Colored MNIST | ResNet50 0.001 0.1 55.687 86.38 | 0.284 0.489 | 0.334 0.524 | 0.198 0.458 | 0.07 0.509
Colored MNIST | ResNet50 (PSGD) le-6 0.01 24.16  93.09 | 0.249 0.959 | 0.334 1.0 | 0.159 0.888 | 0.126 0.712
Colored MNIST | Wide ResNet101-2 | 0.001 025 | 61.643 8525 | 0.258 0.559 | 0.337 0.787 | 0.215 0.473 | 0.084 0.569
Moon-Star FCN 0.01 0.75 | 74315 81.156 | 0.954 0.971 | 0.375 0.457 | 0.257 0.34 02 0.326
Cor. CIFAR-10 | FCN 0.0001  0.005 | 4692 5193 | 0.574 0.847 | 0.202 0.252 | 0.131 0.183 | 0.169 0.182
Cor. CIFAR-10 | CNN 0.001 0.1 43.555 48503 | 039 0.861 | 0.189 0.341 | 0.144 0.387 | 0.14 0.329
Cor. CIFAR-10 | ResNetl8 0.001 0.5 35.153  47.795 | 0.267 0.803 | 0.382 0.634 | 0.266 0.393 | 0.115 0.205
Cor. CIFAR-10 | ResNet50 0.001 0.1 36.3 45.52 | 0.391 0.556 | 0.334 0.475 | 0.203 0.304 | 0.081 0.134
Cor. CIFAR-10 | Wide ResNet101-2 | 0.001 0.25 | 37.827 47.153 | 0.399 0.559 | 0.339 0.653 | 0.215 0.348 | 0.09 0.189
Double MNIST | FCN 0.001 0.5 69.287 7247 | 0986 0.999 | 0.236 0406 | 022 0.485 | 0.428 0.481
Double MNIST | CNN 0.005 0.4 83.987 9457 | 0383 0916 | 0.235 0.772 | 0.187 0.476 | 0.204 0.55
Double MNIST | ResNetl8 0.001 0.1 85.44 95577 | 0.285 0.706 | 0.306 0.365 | 0.467 0.602 | 0.485 0.776
Double MNIST | ResNet50 0.001 0.1 42.045 95.733 | 0.228 0.498 | 0.16 0.256 | 0.152 0.392 | 0.172  0.68
Double MNIST | Wide ResNet101-2 | 0.001 0.1 43.12 96.08 | 0.195 0.508 | 0.161 0.298 | 0.156 0.416 | 0.188 0.703
Parity FCN 0.01 0.75 5531 85.663 | 0.56 0.782 | 0.333 0.679 | 0.032 0.152 | 0.008 0.136
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Figure 19. (Left) Effects of learning rate on OOD performance
(unbiased test acc.), network prunability, and representation prop-

erties with the Waterbirds dataset.

show that training models for longer according to an addi-
tional criterion (CE loss < le — 5) produces qualitatively
identical results as test accuracy changes very little beyond
convergence for both low and high LR models. Finally,
Fig. 26 demonstrates that alternative choices to character-
ize parameter and representation compressibility, such as
(g, x)-Compressibility, sparsity, and the recently proposed
PQ-Index [13] produce qualitatively identical results.

Optimizers & LR schedules. We confirm our findings on
robustness to SCs and comp. extend to modern and standard
training setups. Fig. 29 (left) shows that core benefits persist
with ResNet50 (Colored MNIST) using the PSGD (Kron)
optimizer and a WSD LR schedule. Fig. 29 (right) shows
that our key findings also hold under a standard CIFAR-100
setup with AdamW, cosine annealing, weight decay, and
validation set based model selection, addressing concerns
about reliance on constant LR SGD.

Fig. 30 (left) compares ResNetl8 models trained on

that the effects of LR are almost completely integrated by
S = 1000. Fig. 30 (right) shows that creating a “model
soup” [81] is another way of obtaining robustness vs. com-
pressibility disentanglement.

E. Additional Details and Results Regarding
Neural Network Attribution

One of the most commonly used methods include Integrated
Gradients (IG) [70]. Given a predictor f, an input x, and a
baseline input x’, IG for the i’th component of x is com-
puted as follows:

U of(x + a(x — X))
6371‘

1G;(x) := (z; — 2}) X / da.

a=0

Intuitively, this corresponds to integrating the sensitivity of
the output to changes in x; throughout linear interpolation
from z’ to . See [70] for a justification of IG’s methodol-
ogy, and see [50] for strengths and weaknesses of various
attribution methods. To investigate whether our results are
an artifact of using IG as our attribution method, we visually
compare the attributions computed by Integrated Gradients
(IG) and another prominent attribution method, DeepLift



Table 2. Minimum and maximum values for each dataset-model combination included in our regularization experiments.

Dataset Model HP Test Acc. Prunability Avg. CSI
Min. Max. Min. Max. | Min. Max. | Min. Max.

Colored MNIST | Learning Rate 0.001 0.15 72.297 92.203 | 0.262 0.8 0.441 0.644
Colored MNIST | High LR + L2 Reg. | 1e-05 0.001 | 92.183 94.25 0.79 0.87 | 0.651 0.848
Colored MNIST | Batch Size 0.01 0.3333 | 68.363 90.303 | 0.253 0.661 | 0.383 0.587
Colored MNIST | Momentum 0.1 0.99 68.38 91.197 | 0.256 0.748 | 0.387 0.633
Colored MNIST | L1 Regularization 1e-05 0.001 | 72.887 90.347 | 0.275 0.864 | 0.458 0.859
Colored MNIST | L2 Regularization 0.0001 0.05 71727 89.687 | 0.263 0.76 | 0.432 0.873
Colored MNIST | ~ (Focal Loss) 0.001 25.0 68.203 91.8 0.254 0.645 | 0.377 0.626
Colored MNIST | p (ASAM) 0.01 10.0 68.723 90.977 | 0.256 0.522 | 0.38 0.508
MNIST-CIFAR | Learning Rate 0.001 0.1 24327 47497 | 0.293  0.69 024 0.376
MNIST-CIFAR | HighLR + L2 Reg. | 1e-06 0.0001 | 46.947 48.327 | 0.677 0.727 | 0.384 0.497
MNIST-CIFAR | Batch Size 0.01 0.3333 | 25.95 46.24 0.29 0.529 | 0.201 0.262
MNIST-CIFAR | Momentum 0.1 0.99 25.887 46.397 | 0.29 0.666 | 0.226 0.354
MNIST-CIFAR | L1 Regularization le-05 0.001 24.65 46.097 | 0.28 0.845 | 0.24 0.486
MNIST-CIFAR | L2 Regularization 0.0001  0.075 24.18 47.13 | 0.287 0.619 | 0.189 0.533
MNIST-CIFAR | v (Focal Loss) 0.01 25.0 25.87 40.393 | 0.283 0.597 | 0.223 0.314
MNIST-CIFAR | p (ASAM) 0.01 10.0 26.3 34.053 | 0.286 0.769 | 0.225 0.261
Double MNIST | Learning Rate 0.001 0.25 88.13 96.39 | 0.282 0.801 | 0.529 0.631
Double MNIST | High LR + L2 Reg. | 1e-05 0.001 96.68 97.75 | 0.664 0.89 | 0.641 0.836
Double MNIST | Batch Size 0.01 0.3333 | 85.39 96.62 | 0.279 0.514 | 0.375 0471
Double MNIST | Momentum 0.1 0.99 85.58 9571 | 0.278 0.755 | 0471 0.57
Double MNIST | L1 Regularization le-06  0.001 | 87.64 9587 | 0.28 0.932 | 0.517 00914
Double MNIST | L2 Regularization | 0.0001  0.05 86.83  97.08 | 0.285 0.727 | 0.504 0.896
Double MNIST | ~ (Focal Loss) 0.001 25.0 85.01 95.89 | 0.275 0.661 | 0.456 0.58
Double MNIST | p (ASAM) 0.01 10.0 85.71 95.82 | 0.277 0.626 | 0.467 0.488
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Figure 20. Comparing various hyperparameters, regularization methods, and losses in terms of OOD robustness, compressibility, and core
feature utilization in Double MNIST dataset with a ResNet18 model (top), and Colored MNIST dataset with a ResNet50 model (bottom).
y-axes are normalized within each figure for each variable.

[68], for CIFAR-10 samples under ResNet18 models in
Fig. 14. The two methods produce identical results for the
purposes of this paper. Both methods are implemented us-
ing the captum package for PyTorch framework [33].

We can utilize attribution methods for convergent vali-

dation of class-selectivity index as a measure of spurious
feature utilization. Although in datasets such as Colored

MNIST pixels for spurious and core features overlap, they
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Figure 21. Effects of column pruning on models trained on Double MNIST (top) and Colored MNIST (bottom) datasets, under various
learning rates. x-axes are modified for visualization.
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Figure 22. Effects of magnitude pruning on models trained on Double MNIST (top) and Colored MNIST (bottom), under various LRs.
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Figure 23. Effects of learning rate on OOD performance (unbiased Figure 24. Effects of learning rate on OOD performance (unbiased
test acc.), network prunability, and representation properties with test acc.), network prunability, and representation properties with
a learning rate annealing setting, where the LR is multiplied by 0.1 an Adam optimizer, with $; = 0.9, 52 = 0.999.

after 1000th iteration.

are distinct in others such as Double MNIST. Thus, we can by CSI parallel that computed through input attribution.

compute input attribution on Double MNIST and through Fig. 27 shows a comparison of the two metrics across five
normalization we can determine how much (i.e. what per- datasets and LRs for Double MNIST dataset. Remarkably,
centage) of models’ attribution is on the spurious vs. core the two demonstrate qualitatively identical patterns, con-

feature. We can then see whether the patterns demonstrated firming CSI as a useful metric of core feature utilization.
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Figure 25. (Top) Effects of learning rate on OOD performance
(unbiased test acc.), network prunability, and representation prop-
erties when trained for 100% training accuracy and < 0.00001
training loss. (Bottom) Test accuracy does not meaningfully
change beyond convergence (vertical lines correspond to the point
where 100% was reached).

Creation of attribution maps for CIFAR datasets. We
train a ResNet18 model using a low vs. high LR with /0 dif-
ferent seeds on CIFAR-10 and CIFAR-100 datasets. Then,
we extract those samples in the test set which have been cor-
rectly predicted by > .75 of the high LR models and < .25
of low LR ones. Then, we investigate the attribution maps
of low vs. high LR models in Fig. 8.

E.1. Additional Attribution Visualizations

We provide additional visualization of attributions for
our experiments in the main paper; for Colored MNIST
(Fig. 31), MNIST-CIFAR (Fig. 32), Double MNIST
(Fig. 33), CelebA (Fig. 34), CIFAR-10 (Fig. 35), and
CIFAR-100 (Fig. 36) datasets. Notice that as in the main
paper, low LR models are more likely to focus on spurious
features compared to high LR models.
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Figure 26. Utilizing alternative notions of parameter and representation compressibility such as prunability, (g, x)-Compressibility (with
q = 2,k = 0.1), sparsity, and the recently proposed PQ-Index (with p = 2,q = 1).
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Figure 27. Comparing CSI vs. input attribution to core features (%), using Integrated Gradients.
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Figure 28. Examining the effect of LR on unbiased test accuracy 17 85
and BC loss ratio in ResNet18 and Double MNIST dataset, as well 80
as ResNet50 and Colored MNIST dataset. % 75 —e—- n=0.001
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Figure 30. (Left) Unbiased test set performance as a function of
LR reduction. (Right) Disentangling compressibility and robust-
ness through a “model soup” (the rightmost model).
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Figure 29. Experiments with alternative optimizers, schedulers,
and convergence criteria.
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Figure 31. Attributions of trained ResNet18 models on Colored MNIST dataset.
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Figure 32. Attributions of trained ResNet18 models on MNIST-CIFAR dataset.
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Figure 33. Attributions of trained ResNet18 models on MNIST-CIFAR dataset.
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Figure 34. Attributions of trained Swin Transformer models on CelebA dataset.
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Figure 35. Attributions of trained ResNet18 models on CIFAR-10 dataset.

TINdUL T MOT T UBIH S%_ 1 MoT Y7 UbIH

Indul ¥TMOT WTYBIH  Indul  WIMOT WTYBIH  andul W1 MOT w1 UBIH induj Y1 moT Y1 ubiH

-100 dataset.

Figure 36. Attributions of trained ResNet18 models on CIFAR
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