
Talking to DINO: Bridging Self-Supervised Vision Backbones with Language
for Open-Vocabulary Segmentation

Supplementary Material

In the following, we present additional material and ex-
perimental analyses of the proposed Talk2DINO approach.

A. Additional Experiments and Analyses

Analysis of Model Parameters. Fig. 5 reports a compari-
son of the relationship between the performance, in terms of
average mIoU, and the number of parameters of the models.
As it can be observed, Talk2DINO presents a lower number
of parameters than the recent competitors FreeDA [3] and
ProxyCLIP [26], along with an improved average mIoU.
Models with a comparable number of parameters, such
as TCL [9], GroupViT [54], and MaskCLIP [63], exhibit
a lower performance compared to Talk2DINO. Finally, it
shall be noted that models such as FreeDA and ReCo [41]
require maintaining external sources of knowledge, which
increases memory consumption. Further discussion on the
comparison between Talk2DINO, ProxyCLIP, and FreeDA
can be found in the following sections (see ”Comparison
with ProxyCLIP and FreeDA”).

Role of DINO Registers. The main configuration of
Talk2DINO, with both the base and large sizes, leverages
the variant of DINOv2 with registers. In Fig. 8 we de-
pict, on the first row, the average self-attentions between the
CLS and the other tokens for the ViT-S, ViT-B, and ViT-L
architectures with and without registers, while in the fol-
lowing rows, we show the various self-attention heads for
each backbone. It can be observed that in the ViT-S the

artifacts are not present, and the average self-attention be-
tween the model with and without the registers is nearly
identical. Instead, the ViT-B exhibits artifacts in the top left
corner, resulting in an average self-attention that is espe-
cially focused on that portion of the image. This side effect
is even more noticeable with the ViT-L, for which the arti-
fact is the only visible token in the average self-attention.
These observations align with the results reported in Tab. 2,
that show a downgrade in performance without the regis-
ters that is directly related to the presence of the artifacts in
the self-attentions. Indeed, the largest difference in perfor-
mance is measured in the ViT-L architecture, while in the
ViT-S case, the backbone without registers performs better
on four benchmarks out of five.

Effect of Training CLIP Last Layer. Table 6 reports a
comparison between Talk2DINO when training only the
ψ(t) projection as proposed in the main paper and when
instead unfreezing the last layer of CLIP [38]. Despite this
experiment exhibiting a small performance gap between the
two configurations, unfreezing the last layer of CLIP, inter-
estingly, leads to worse results. This outcome highlights
that the textual representations provided by CLIP, which
have been pre-trained to match their visual counterpart, if
trained inside a different pipeline, can be harmed and can
lose part of their capabilities in multimodal understanding.

Choosing Different Visual backbones. In Table 2 of the
main paper, we report the performance of our approach
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Figure 5. Performance vs. Parameter Count. The y-axis denotes the obtained mIoU averaged over all the five benchmarks reported in
the main paper. Dashed lines connect methods tested with multiple backbone sizes. These are labeled S/B/L for Small/Base/Large ViT
models. Talk2DINO offers the best trade-off between performance and number of parameters.



Visual Backbone ViT-S ViT-B ViT-L

MAE - 0.56 0.56
CLIP - 0.89 0.89
DINO 0.62 0.73 -
DINOv2 (without registers) 0.95 0.96 0.95
DINOv2 (with registers) 0.96 0.97 0.96

Table 5. Patch linear probing accuracy on VOC for ViT-Small,
ViT-Base, and ViT-Large.

applied to different visual backbones. The results demon-
strated that our training pipeline is especially suitable for
DINOv2, while it leads to unsatisfactory performance on
DINO, MAE, and CLIP. We attribute this performance gap
to two major factors: (i) the quality of the attention maps
and (ii) the semantic richness of the patch representations.

For the first point, we qualitatively analyze the self-
attention patterns of the different backbones. Fig. 9 show-
cases the average self-attentions between the CLS token and
the other tokens in the first row, breaking down the contri-
butions from the various self-attention heads in the succes-
sive rows. We observe that the self-attention heads of CLIP
introduce a noise pattern similar to what we observed for
DINOv2 without registers, which limits the effectiveness of
our training pipeline. On the other hand, the self-attention
maps of DINO and MAE appear cleaner and emphasize ho-
mogeneous image regions. However, in these cases, the per-
formance gap with DINOv2 can be attributed to the insuffi-
cient semantic richness of the extracted dense features.

To quantitatively assess the patch-level semantics of
these backbones, we conduct an experiment in which we
classify each patch through linear probing on the images of
VOC. We determine the ground-truth labels of the patches
via majority voting and evaluate accuracy on the valida-
tion set (batch size = 16, learning rate = 5 × 10−3, for 3
epochs, with 32×32 patches per image, using ViT-B as the
backbone). The results, reported in Table 5, align with the
overall trends highlighted in the paper: DINOv2 consis-
tently emerges as the best-performing backbone, MAE as
the worst, and CLIP and DINO as intermediate. These find-
ings further confirm that the semantic richness of the fea-
tures extracted by different backbones plays a crucial role in
the effectiveness of our approach. Similar conclusions were
drawn in the ablation study of FreeDA [3], where a compa-
rable performance drop was observed when using CLIP or
DINO instead of DINOv2.

Using CLIP Text Tokens. In Table 6, we report the re-
sults of utilizing the dense output of the CLIP text encoder
instead of its CLS token for alignment. While our primary
experiments align the CLS token with the best attention map
embedding to target the patches most relevant to the text,
we also explore aligning individual text tokens to the best
attention map embeddings. This approach is motivated by
the hypothesis that each word in the text might correspond

mIoU

V20 C59 Stuff City ADE

Effect of Training CLIP Last Layer
Trained 77.9 31.5 21.3 34.6 18.7
Frozen 87.1 39.8 28.1 36.6 21.1

Effect of Text Token Selection
Average text tokens 84.7 37.9 25.7 33.6 20.0
Text token to best self-attn map 83.9 33.8 24.2 29.5 18.1
Text token to best self-attn map (NS) 80.8 33.9 23.7 27.5 18.6
CLS token only 87.1 39.8 28.1 36.6 21.1

Table 6. Ablation study on the effect of training the last layer of
CLIP and text token selection strategies.

to a distinct region in the image. During inference, since we
perform the alignment on individual text tokens rather than
the CLS token, we average the text tokens to calculate sim-
ilarity with the visual patches. However, this method yields
inferior results compared to using the CLS token. We then
refine this approach by aligning only a subset of text tokens
selected using nucleus sampling (α = 0.6) to filter out po-
tentially irrelevant words, such as stop words. Despite this
effort, performance does not improve.

These observations suggest that the global objective of
the training of CLIP, similar to its effect on visual patch
embeddings, may not endow text tokens with strong local
properties that accurately reflect the specific word each em-
bedding represents. This limitation likely contributes to the
noisiness of such alignments. Additionally, we evaluate the
use of the average of CLIP text tokens in both training and
inference as an alternative to the CLS token. While this ap-
proach slightly improves over aligning individual tokens, it
still underperforms compared to the CLS token, indicating
that it encapsulates the most useful and less noisy informa-
tion for alignment with DINOv2 patches.

Impact of Image Resolution. According to the evaluation
protocol introduced in GroupViT [54] and standardized in
TCL [9], the images are resized to have a shorter side of
448, and a sliding window approach with a stride of 224 pix-
els is employed. However, Wang et al. [47] observed that
the approaches based on CLIP benefit from employing a
shorter side of 336 with 224 × 224 windows and a stride of
112 pixels, leading to an equivalent computational effort but
better performance. This phenomenon is attributed to two
reasons: (i) each window has the same resolution on which
CLIP has been originally trained, and (ii) CLIP presents an
impressive global understanding but lacks localization ca-
pabilities, hence relying on many smaller windows is more
advantageous than more patches. This variation of the eval-
uation setting is not necessary for Talk2DINO because DI-
NOv2, which is the frozen underlying visual encoder, has
been trained with a 518 × 518 resolution and presents
an outstanding patch-level understanding, However, Tab. 7
reports the results obtained following the setting used in



ViT-Base (mIoU) ViT-Large (mIoU)

Model Visual Backbone Resolution V20 C59 Stuff City ADE Avg V20 C59 Stuff City ADE Avg

without Mask Refinement
SCLIP [47] CLIP 336 80.4 34.2 22.4 32.2 16.1 37.1 70.6 25.2 17.6 21.3 10.9 29.1
NACLIP [18] CLIP 336 79.7 35.2 23.3 35.5 17.4 38.2 78.7 32.1 21.4 31.4 17.3 36.2
ProxyCLIP [26] CLIP+DINOv2 336 80.5 37.3 25.3 35.8 19.0 39.6 83.5 36.7 25.0 35.8 21.0 40.4
ProxyCLIP [26] CLIP+DINO 336 78.2 38.8 26.2 39.7 19.7 40.5 82.1 38.2 26.2 41.2 22.2 42.0
Talk2DINO (Ours) DINOv2 336 88.3 39.1 27.4 38.2 20.2 42.6 86.6 38.2 26.0 36.4 19.3 41.3

with Mask Refinement
SCLIP [47] CLIP 336 79.3 34.6 22.3 20.3 15.4 34.4 66.6 22.4 14.7 6.9 7.7 23.7
NACLIP [18] CLIP 336 83.0 38.4 25.7 38.3 19.1 40.9 84.5 36.4 24.6 37.1 19.6 40.4
ProxyCLIP [26] CLIP+DINOv2 336 80.9 39.3 26.6 37.7 19.9 40.9 83.5 36.7 26.4 38.6 22.1 41.5
ProxyCLIP [26] CLIP+DINO 336 78.5 39.3 26.7 40.1 20.0 40.9 82.6 38.7 26.7 42.1 22.5 42.5
Talk2DINO (Ours) DINOv2 336 89.4 41.5 29.4 40.3 21.2 44.4 89.5 41.7 29.8 38.7 20.8 44.1

without Mask Refinement
SCLIP [47] CLIP 448 77.8 33.0 21.1 19.8 14.6 33.3 61.2 20.5 13.1 6.7 7.0 21.7
NACLIP [18] CLIP 448 71.3 34.8 22.9 33.7 17.7 36.1 74.5 32.6 21.6 30.5 17.8 35.4
ProxyCLIP [26] CLIP+DINOv2 448 83.3 37.8 25.6 28.8 19.1 38.9 85.0 36.6 25.0 33.8 20.6 40.2
ProxyCLIP [26] CLIP+DINO 448 80.4 39.0 26.2 31.7 19.5 39.4 83.1 37.8 25.9 37.5 21.6 41.2
Talk2DINO (Ours) DINOv2 448 87.1 39.8 28.1 36.6 21.1 42.5 87.1 39.1 27.0 35.8 21.1 42.0

with Mask Refinement
SCLIP [47] CLIP 448 79.3 34.6 22.3 20.3 15.4 34.4 66.6 22.4 14.7 6.9 7.7 23.7
NACLIP [18] CLIP 448 74.9 37.6 25.2 36.1 18.4 38.4 79.8 36.8 25.0 35.6 18.4 39.1
ProxyCLIP [26] CLIP+DINOv2 448 83.1 39.3 26.7 29.5 19.7 39.7 85.1 37.8 25.9 35.3 21.4 41.1
ProxyCLIP [26] CLIP+DINO 448 80.0 39.1 26.5 31.7 19.5 39.4 82.8 37.8 26.2 26.2 21.6 38.9
Talk2DINO (Ours) DINOv2 448 88.5 42.4 30.2 38.1 22.5 44.3 89.8 42.7 29.6 38.4 22.9 44.7

Table 7. Comparison with unsupervised OVS models on Pascal VOC [15], Pascal Context [34], COCO Stuff [7], Cityscapes [11], and
ADE20K [61, 62] following the evaluation setting proposed in SCLIP [47] (resolution 336) and TCL [9] (resolution 448).

SCLIP, employing a shorter side of 336 for VOC, Context,
COCO-Stuff and ADE, of 560 for Cityscapes, with 224 ×
224 windows and stride 112. Results show that Talk2DINO,
on average, performs better with a resolution of 448, but
the performance slightly varies when changing the setting
to 336. This confirms that the semantics of the patch-level
features of DINOv2 are robust towards variations of resolu-
tion and that our learned bridge is valid for both scenarios.
Moreover, for a fair comparison, we also report the results
of SCLIP, NACLIP, and ProxyCLIP when adopting the 448
resolution of the standard protocol, in which Talk2DINO
largely outperforms the competitors.

Comparison with ProxyCLIP and FreeDA.
GroupViT [54] has been the first model to tackle the
weakly-supervised OVS. It trains a custom ViT architecture
from scratch by hierarchically merging tokens at different
layers. Afterward, several works followed this direction,
investigating how to let the segmentation capabilities to
emerge by training over a large corpora of image-caption
pairs. On the contrary, more recent works focused on
finding modifications to the architecture of CLIP in order
to improve its localization properties. Moreover, some
methods consider the usage of further visual encoders with
enhanced localization capabilities to help CLIP on dense
tasks. Among these methods, ProxyCLIP and FreeDA
study how to combine DINO and DINOv2 with CLIP.

FreeDA employs Stable Diffusion to create a huge col-
lection of localized images from captions, detecting the area
in which each noun of the caption has been generated. This
information is used to build a database of textual-visual em-
bedding pairs, in which the textual embedding is obtained
with CLIP on each noun and the visual embedding is the
average patch-level embedding of DINOv2 from the corre-
sponding area. Then, at inference time, a set of textual em-
beddings is retrieved for each input category, and the corre-
sponding visual embeddings are averaged to create a proto-
type for that category in the space of DINOv2. Finally, the
CLIP visual encoder runs on the input image to solve ambi-
guities and remove noise. ProxyCLIP proposes to leverage
the semantic coherence of a visual encoder such as DINO or
DINOv2 to guide the computation of the patch-level embed-
dings of CLIP. This guidance is performed inside an atten-
tion module, in which the patch-level embeddings of DINO
act as queries and keys while those of CLIP act as values.

Talk2DINO, similarly to FreeDA and ProxyCLIP, inves-
tigates how to leverage DINOv2 to compensate for CLIP.
However, we propose to employ contrastive learning over a
large set of image-caption pairs based on maximum simi-
larity between the attention head embeddings and texts, to
learn a functional mapping that bridges the CLIP text em-
beddings into the DINOv2 space. Our approach demon-
strates that the two spaces can be directly connected to set



Image→Text Text→Image

R@1 ↑ R@5 ↑ R@10 ↑ Median ↓ Mean ↓ R@1 ↑ R@5 ↑ R@10 ↑ Median ↓ Mean ↓
ViT-Base
CLIP 41.3 65.8 76.3 2 13.4 22.6 44.1 54.9 8 52.5
Talk2DINO 29.5 56.0 69.0 4 16.4 12.5 34.0 48.4 11 38.4

+ Custom Alignment 28.6 58.8 72.0 4 12.0 28.0 55.6 68.7 4 19.3

ViT-Large
CLIP 45.4 71.1 79.2 2 11.0 26.5 48.7 59.0 6 44.2
Talk2DINO 26.5 53.7 65.6 5 18.8 12.7 33.7 47.8 11 43.1

+ Custom Alignment 37.9 64.7 75.1 3 13.1 24.4 50.1 63.2 5 27.8

Table 8. Retrieval performance on the COCO Captions test set.

Visual Encoder Params (M) FLOPS (G) Ext. (GiB)

ProxyCLIP CLIP ViT-B/16 + DINO ViT-B/8 172.0 521.2 -
ProxyCLIP CLIP ViT-B/16 + DINOv2 ViT-B/14 172.8 180.8 -
FreeDA CLIP ViT-B/16 + DINOv2 ViT-B/14 172.8 125.1 12.5
Talk2DINO DINOv2 ViT-B/14 86.6 107.4 -

Table 9. Number of parameters, FLOPS, and the dimension of the external knowledge for ProxyCLIP, FreeDA, and Talk2DINO.

the new state-of-the-art in the unsupervised OVS field. Ta-
ble 9 shows a quantitative comparison in terms of the num-
ber of parameters and FLOPS of the visual encoders and the
dimension of the external knowledge (i.e., the database of
FreeDA), when assuming an input image with a resolution
of 448 × 448. The results highlight that our method is more
practical and less demanding in computation and memory,
while presenting improved results against all competitors.

In Tab. 1, we followed the original configurations of the
competitors and, hence, ProxyCLIP uses DINOv2 with reg-
isters while FreeDA does not. We report a comparison with
and without registers in Tab. 10. The registers present the
greatest impact on Talk2DINO, because, as described in
”Role of DINO Registers”, the presence of anomaly tokens
leads all the self-attention heads to focus only on them, pre-
venting the selection of diverse areas during training and,
hence, limiting the efficacy of our proposal. Moreover, in
Tab. 10 we report the effect of the background cleaning also
on FreeDA and ProxyCLIP. This approach is effective only
on Talk2DINO due to the learned alignment between text
and average embeddings of the self-attention heads, while
it leads to lower results when applied to the other methods.

ViT-B vs ViT-L. Tab. 1 of the main paper shows that, with-
out mask refinement, the results achieved by Talk2DINO
with DINOv2 ViT-B as vision encoder are slightly bet-
ter than the ones achieved with ViT-L, while the oppo-
site should be expected. However, when we apply the
PAMR for mask refinement, the results of ViT-L signifi-
cantly improve, surpassing the ViT-B on five benchmarks
out of eight. A similar phenomenon can be observed in
other competitors, such as MaskCLIP, SCLIP, ClearCLIP,
and NACLIP, while in FreeDA and ProxyCLIP we cannot
establish an encoder size that prevails on the other. Even
from the experiment in Tab. 5 on patch-level linear prob-

ing, we can observe that ViT-B performs slightly better
than ViT-L. These results suggest that DINOv2 ViT-L has a
comparable semantic understanding with respect to ViT-B,
but presents inferior localization properties, which are com-
pensated through PAMR. We hypothesize that training the
model with a form of weak- or self-supervision by exploit-
ing the innate capabilities of pre-trained backbones lacks
a direct relation between performance and model size. In-
deed, the impressive semantic and localized understanding
of DINOv2 is a consequence of its training procedure but
not the direct objective. From Figure 8, it is noteworthy
that the activations of ViT-S, ViT-B, and ViT-L have very
different behaviors, impacting the results of Talk2DINO.

B. Image-Text Matching Results
While Talk2DINO is primarily designed for OVS, we also
assess its performance on image-text retrieval to evaluate
its capabilities in global image understanding. For this task,
we adopt the same text encoding approach used in segmen-
tation, projecting the CLIP text embedding. The global im-
age representation is derived by averaging the embeddings
computed from each DINOv2 attention map. Specifically,
for each attention map Ai, we calculate a visual embedding
vAi ∈ RDv as the weighted average of the dense feature
map v. The final global image representation is then ob-
tained by taking the mean of all vAi embeddings.

In Table 8, we assess the retrieval performance on
the COCO Captions test set [31] using both ViT-B and
ViT-L configurations. While Talk2DINO generally per-
forms slightly below CLIP across most metrics, it demon-
strates a notable advantage in the mean rank for the text-
to-image retrieval task. This result underscores the abil-
ity of Talk2DINO to better address extreme failures com-
pared to CLIP, indicating improved robustness in handling



Model Visual Encoder V20 C59 Stuff City ADE V21 C60 Object Avg

DINOv2 ViT-B/14 with registers (without Mask Refinement)
FreeDA DINOv2 83.4 39.5 25.9 35.2 20.7 50.1 ▷ 43.6 34.3 23.8 ▷ 24.7 39.1 ▷ 38.4
FreeDA CLIP+DINOv2 87.0 40.6 25.7 34.2 21.2 49.3 ▷ 41.8 35.7 34.8 ▷ 34.7 41.1 ▷ 40.1
ProxyCLIP CLIP+DINOv2 83.0 37.2 25.4 33.9 19.7 58.6 ▷ 60.0 33.8 37.4 ▷ 37.3 41.1 ▷ 41.3
Talk2DINO DINOv2 87.1 39.8 28.1 39.6 21.1 59.9 ▷ 61.5 35.1 37.1 ▷ 41.0 43.5 ▷ 44.2

DINOv2 ViT-B/14 with registers (with Mask Refinement)
FreeDA DINOv2 84.9 42.3 27.7 36.8 22.0 50.2 ▷ 43.7 36.7 24.5 ▷ 25.5 40.6 ▷ 40.0
FreeDA CLIP+DINOv2 87.4 42.4 26.6 34.8 22.1 49.4 ▷ 41.7 37.2 36.6 ▷ 36.7 42.1 ▷ 41.1
ProxyCLIP CLIP+DINOv2 83.1 38.9 26.6 35.4 20.3 62.0 ▷ 63.4 35.2 38.7 ▷ 38.6 42.5 ▷ 42.7
Talk2DINO DINOv2 88.5 42.4 30.2 41.6 22.5 63.9 ▷ 65.8 37.7 40.3 ▷ 45.1 45.9 ▷ 46.7

Table 10. Comparison between FreeDA, ProxyCLIP, and Talk2DINO when using DINOv2 with and without registers. For VOC21, Object,
and the average, we report the results without background cleaning on the left and with background cleaning on the right.

challenging or outlier queries. In addition to computing
text-image similarities using cosine similarity between a
global text token and a global image token, we experi-
ment with a similarity function that mirrors the one used
during training. Specifically, instead of representing the
image with the mean of the vAi embeddings and calcu-
lating similarity as the cosine similarity between this rep-
resentation and the text encoding, we represent the im-
age using all vAi embeddings. We compute the similarity
as maxi=1,...,N sim(vAi , t), taking the maximum similar-
ity score across all heads. This alternative similarity func-
tion leads to significant performance improvements, allow-
ing Talk2DINO to surpass CLIP on several metrics. This
enhancement is likely due to the ability of the model to eval-
uate captions at a finer granularity. Captions often describe
multiple aspects of an image, including both foreground and
background elements. By individually examining different
regions of the image as detected by distinct attention heads,
the model can assign more precise scores, ultimately boost-
ing retrieval accuracy.

C. Activation Map Visualizations
In Fig. 6, we show the distribution of attention heads se-
lected for alignment with the text input during the final
epoch of training. The results indicate that certain heads,
particularly heads 1 and 3, are more often aligned with the
text than others. However, aside from these, the remaining
heads are relatively evenly distributed. These findings are
noteworthy because they suggest that some heads special-
ize in capturing features that align more closely with the
input caption, while all heads contribute meaningfully dur-
ing training. Notably, no head shows a negligible activation
frequency, highlighting the importance of the entire set of
attention heads in the alignment process.

Fig. 7 presents examples from the training set, showcas-
ing images paired with their corresponding captions and the
attention maps selected for alignment. Despite describing
the same scene, variations in the captions lead the alignment
procedure to focus on different regions of the image. For in-
stance, in the first row, the caption mentioning the fans also
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Figure 6. Percentage of times each attention head of ViT-B back-
bone is selected for alignment to textual embeddings on the final
epoch of training. The dashed line denotes uniform distribution.

focuses on the background, while captions that reference
only the player, the ball, and the racket do not.

D. Additional Qualitative Results
Effect of Background Cleaning. Fig. 10 shows a set of
qualitative results in which we highlight the advantages of
using the proposed background cleaning procedure with re-
spect to directly thresholding the similarities with the input
categories to detect the background. In particular, the first
two rows show four qualitatives on images from COCO Ob-
ject and the last two rows from VOC. These results demon-
strate that background cleaning removes the noise in the
background from the image and improves the fitting of the
masks on the foreground objects. These findings are re-
flected in the results reported in Table 4 of the main paper.

In-the-Wild Qualitative Examples. Fig. 11 depicts
a few examples of “in-the-wild” segmentation, ob-
tained by providing to Talk2DINO sample images from
the web and asking it to segment uncommon cate-
gories, such as “pikachu”, “millennium falcon”,
and “westminster abbey”, and free-form text, like
“golden retriever puppy”. On the left, we show
three examples in which we task the model with also find-
ing the background, while exploiting the background clean-



Head 1: A professional tennis
player hits a ball as fans watch.

Head 5: champion tennis player
swats at the ball hoping to win

Head 7: A man hitting a tennis
ball with a racquet.

Head 10: A man is hitting his
tennis ball with a recket on the
court.

Head 11: a tennis player on a
court with a racket

Head 0: A gray and white
building on the corner of bay
street with building behind it.

Head 1: A street in the ciy San
franscisco on a good day

Head 2: A tree leaning on a
building on Bay Street.

Head 5: A car driving down a
street next to a tall building.

Head 9: A street sign for Bay
Street in a residential
neighborhood.

Head 1: A puppy holding a black
disk on the couch

Head 2: A dog sitting on a couch
holding a frisbee in its mouth.

Head 3: A dog holding a plate
while sitting on a chair.

Head 9: A bull dog holding a
frisbee in it’s mouth.

Head 10: a brown black and
white dog and a black frisbee

Head 0: several of the baseball
players are in view

Head 1: A large crowd is
watching a baseball game.

Head 3: Players on a baseball
field during a game.

Head 5: A man is up to bat at a
professional baseball game.

Head 6: a man holding up his
baseball bat during a baseball
game

Head 1: A white round table filled
with some assorted treats.

Head 6: A number of pastry
items on a table

Head 7: A dessert tray with
donuts, cupcakes, and muffins

Head 10: A white plate topped
with chocolates, donuts, and
other goodies.

Head 11: Donuts and other
goodies on a table

Figure 7. Sample images from the training set paired with their corresponding captions and the attention maps selected for alignment
during the last epoch of training.

ing procedure, and, on the right, three examples in which
the model has to assign a provided category to each pixel.
The high quality of the resulting masks demonstrates the
efficacy of our approach, even on out-of-domain images.
From these examples, we can appreciate the capabilities of
the model in combining the knowledge from CLIP with the
semantic localization of DINOv2 on unconventional con-
cepts, such as fictional character names and proper nouns
of historical buildings.

Comparison with State-of-the-Art Methods. Finally, in
Fig. 12 we report a set of qualitative results on the five

datasets used for the evaluation of the models, in addition to
the qualitative depicted in Fig. 4 of the main paper. We com-
pare the segmentation masks of Talk2DINO with the ones
of FreeDA [3], ProxyCLIP [26], and CLIP-DINOiser [52],
which represent our main competitors. In particular, we re-
port a pair of images from Pascal VOC with background and
eight pairs of images from Pascal Context, COCO Stuff,
Cityscapes, and ADE20K, without background. As it can
be seen, these qualitative results further highlight the im-
pressive segmentation capabilities of Talk2DINO with both
background and foreground categories.
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Figure 8. Comparison of DINOv2 with and without registers across different visual backbones (ViT-S, ViT-B, and ViT-L). The results
highlight how the ViT-B and ViT-L backbones without registers exhibit artifacts that introduce noise during the alignment process.
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Figure 9. Self-attention activations of different visual backbones (i.e., DINOv2, DINO, MAE, CLIP).
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Figure 10. Qualitative results obtained with and without the proposed background cleaning strategy, on COCO Object and Pascal VOC.
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Figure 11. ”In-the-wild” segmentation results obtained by prompting Talk2DINO with uncommon textual categories on images retrieved
from the web.
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Figure 12. Additional qualitative results of Talk2DINO in comparison with FreeDA [3], ProxyCLIP [26], and CLIP-DINOiser [52].
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