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A. AbdomenAtlas 3.0 Dataset
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Figure 6. Tumor size distribution in AbdomenAtlas 3.0. A large number of CT scans in AbdomenAtlas 3.0 present small tumors
(≤ 2 cm): 943. The figure’s top row shows histograms of all annotated tumors, while the bottom row focuses on the largest tumor in each
organ. Notably, even considering only the largest tumor per organ, AbdomenAtlas 3.0 still includes a substantial number of small tumors
(≤ 2 cm): 504 for kidney, 358 for liver, and 81 for pancreas. These small tumor reports are crucial for training vision-language AI models
to detect early-stage cancers, where identifying subtle abnormalities is critical for early detection and treatment.



A.1. Visualizations
A.1.1. Cancer Staging and Blood Vessels

Figure 7. Our pancreatic tumor (PDAC) staging report for a stage T4 tumor. To determine the PDAC T stage, radiologists measure
the tumor’s size and evaluate its interactions with critical nearby blood vessels. RadGPT automatically replicates this process by utilizing
per-voxel annotations of the PDAC and surrounding major blood vessels. The figure highlights these segmentations, and the report shows
the angles of contact between the tumor and the blood vessels. In this case, the PDAC fully encases the superior mesenteric artery (SMA),
which is a vital vessel supplying blood to the intestines. Surgical removal of a tumor encasing the SMA is not feasible because the
artery cannot be reconstructed or bypassed without severe risk to the patient’s survival. This involvement classifies the tumor as surgically
unresectable and a stage T4 tumor.



A.1.2. Pancreas Sub-Segments

Figure 8. CT scan with 2 pancreatic tumors (yellow), and illustration of pancreas sub-segmentation into head (white, left), body
(yellow, middle) and tail (white, right). RadGPT used the sub-segments to locate both PDAC tumors in the pancreas head. Abdom-
enAtlas 3.0 is the first to present pancreas sub-segments annotated per voxel. This information is crucial for writing radiology reports,
as localizing pancreatic tumors in the pancreas head, body or tail is key for determining if the tumor can be surgically removed, and for
tracking tumors in time.



Figure 9. CT scan with a pancreatic cyst (yellow), and illustration of pancreas sub-segmentation into head (white, left), body (yellow,
middle) and tail (white, right). RadGPT used the sub-segments to locate the cyst in the pancreas head. AbdomenAtlas 3.0 is the first
to present pancreas sub-segments annotated per voxel. This information is crucial for writing radiology reports, as localizing pancreatic
tumors in the pancreas head, body or tail is key for determining if the tumor can be surgically removed, and for tracking tumors in time.



A.1.3. Liver Sub-segments

Figure 10. CT scan with 24 liver tumors (brown), showing how we segment the liver into eight sub-segments for tumor localization.
Notably, unlike our report, most human-made reports would not describe 24 tumors in detail, due to the time required for this task. Liver
sub-segments are functionally independent, and can be surgically removed without influencing nearby segments. Thus, localizing tumors
into these segments is important for tracking tumors and for surgical planning.



A.1.4. Kidney Tumor Report

Figure 11. CT scan showing a large kidney tumor (yellow) and our report.



A.1.5. Enhanced Human Reports

Figure 12. In our enhanced human reports, LLMs combine detailed quantitative data from RadGPT’s reports with the generality
of human-made reports or clinical notes. In the image, the LLM extracted kidney tumor sizes and volumes from the RadGPT report,
while incorporating tumor type and non-cancer-related findings from the radiologist’s notes. Reports created by RadGPT include detailed
information often absent in human-made reports, such as tumor volumes and individual measurements for a large number of tumors when
present. In contrast, human-made reports provide general findings that can expand RadGPT reports to many insights beyond cancer.



A.1.6. Narrative Reports

Figure 13. Example of Narrative Report: we use LLM to convert structured reports into narrative reports that follow the writing
style of a target hospital’s. The LLM receives 10 example reports from the hospitals as examples of style, and is instructed not to change
the medical content of the structured report during style adaptation. Since reports targeting diverse abnormalities vary strongly in style,
working and structure, we use another LLM to pre-classify the hospital’s human-made reports into diagnostic categories (e.g., liver tumor).
Thus, during style adaptation, we use as examples only reports that focus on the same diagnosis as the structured report. E.g., if the
structured report mentions liver tumors, the examples also will concentrate on liver tumors.



A.2. Word Cloud

Figure 14. Word cloud generated from the AbdomenAtlas 3.0 reports. The size of each word reflects its frequency, highlighting
the most common terms in the reports. The cloud provides insights about the reports, it clearly shows: their objective nature, focusing
on measurements; the inclusion of volumes and HU values, which are usually absent from purely human-made reports; and the focus on
cancer and tumor descriptions, with words like tumor, tumor, location, size, and enhancement.



B. Technical Details of RadGPT

Algorithm 1 Pancreas Sub-segmentation Using SMA
1: Erase parts of the SMA annotation below the pancreas annotation.
2: Perform PCA on a random subset of the pancreas voxels and rotate the pancreas around its center of mass, aligning its principal component with the x-axis. Rotate the SMA

annotation together with the pancreas.
3: Project the SMA onto the x-axis; consider the x-plane at projection’s midpoint as the boundary between pancreatic head and body.
4: For the remaining pancreas (excluding head), split body and tail at the x-axis midpoint, using another x-plane.
5: for each x-plane (slice) from tail to head do
6: Identify connected components in the current slice.
7: if first pancreas slice then
8: Classify all components as body.
9: else

10: Classify components overlapping with the body in the previous slice as body; reclassify others as head. This is important for cases where the pancreatic head bottom
crosses the SMA.

11: end if
12: end for
13: Undo rotations and translations; save head, body, and tail segmentations.

Algorithm 2 WHO-based Tumors Size Measurement
1: Interpolate the tumor segmentation mask to a standard 1x1x1 mm spacing.
2: for each CT slice s containing tumor A do
3: Extract the tumor borders by subtracting the tumor segmentation slice s by itself after binary erosion.
4: Calculate the diameter Ds as the longest line between any two points in the tumor borders in s.
5: end for
6: Select the slice smax with the largest diameter Dmax.
7: In the selected slice smax:
8: Draw two lines L1 and L2 parallel to the diameter Dmax.
9: Set these two parallel lines L1 and L2 as far as possible from each other while touching the tumor borders.

10: Calculate the distance d between lines L1 and L2.
11: Report the tumor size as Dmax × d, converting from mm to cm.

Algorithm 3 Automatic Tumor Staging
1: # Make tumor borders overlap with vessels and organs
2: Apply binary dilation (3x3x3) on tumor mask.
3: for each vessel in {SMA, CHA, CA, SA} do
4: if no overlap with tumor then
5: Set contact = no and continue
6: end if
7: # Isolate main vessel branch
8: for each slice along z-axis from top to bottom do
9: Retain the largest connected component touching the previous slice’s main component, or the largest if within the first 5% of slices.

10: end for
11: Apply binary erosion and dilation (5x5x5), overlap with original vessel segmentation, and retain the largest 3D component.
12: # Check main branch contact with tumor
13: if no overlap with tumor then
14: Set contact = no and continue
15: end if
16: # Align vessel over x-axis and analyze contact with tumor
17: Skeletonize main branch and align rotate volume, aligning principal component (PCA) with x-axis.
18: for each x-coordinate along the x-axis do
19: Check intersection with tumor; if none, continue
20: Align 5mm vessel segment around x-axis using skeleton PCA and crop to 2.5mm
21: # Calculate percentage of border contact with tumor to estimate contact angle (vessels are not perfectly round)
22: Extract vessel borders for each slice and calculate border-tumor overlap percentage
23: Compute contact angle as overlap percentage × 360; update max contact for vessel if new maximum angle is found.
24: end for
25: end for
26: # Define T stage based on vessel contact and tumor size thresholds
27: if max contact for {SMA, CA, CHA} ≥ 180 then
28: Stage = T4
29: else
30: Determine stage by tumor size: T1a ≤ 0.5cm, T1b 0.5–1cm, T1c 1–2cm, T2 2–4cm, T3 > 4cm
31: end if



B.1. Training CT2Rep & CT-CHAT & Merlin on AbdomenAtlas 3.0

We trained CT2Rep using only CT scans and structured reports, ignoring the per-voxel annotations in AbdomenAtlas
3.0. Our training strategy for CT2Rep closely followed the code and hyper-parameters published by the model authors [21].
Possibly, careful search of hyper-parameters and training algorithms for the abdominal region could improve the model’s
performance. We introduced minimal changes, needed to adapt the model to the abdominal region: we adopted sub-word
tokenization to handle decimals frequently present in our reports; we standardized the CT spacing to 1.5 x 1.5 x 1.5 mm,
a choice that reduces computational costs while facilitating tumor measurements by maintaining isotropy; to accommodate
longer reports, we increased the model’s maximum sequence length to 600; and, for hold-out validation (we used 30% of
AbdomenAtlas 3.0 as the validation set), we used validation loss rather than sequential decoding and BLEU scoring, which
significantly reduced validation time. These adjustments, while minimal, were designed to tailor the model for the unique
challenges of abdominal CT report generation.

For CT-CHAT, we similarly trained the model using only CT scans and structured reports without using per-voxel an-
notations from AbdomenAtlas 3.0. While our general training approach again mirrored the original authors’ published
code and hyper-parameters [20], specific adaptations included standardizing the CT spacing to an isotropic 1.5 x 1.5 x 1.5
mm resolution, selecting a patch size of 20 in each dimension (x, y, and z), and ensuring consistency by center-cropping or
padding scans to uniform dimensions of 300 × 300 × 600 mm. Training was performed using four A100 GPUs for 20,000
iterations with a batch size of 16. Furthermore, we employed visual instruction fine-tuning identical to the CT-CHAT authors,
using an attention pooling mechanism that reduced tokens generated by CT-CLIP to 256 via learned queries, which were then
linearly transformed to match the hidden dimension of the Llama 3.1 8B model. Visual instruction fine-tuning proceeded for
100 epochs.

The training of Merlin also leveraged only CT scans and structured reports, again without incorporating per-voxel anno-
tations from AbdomenAtlas 3.0. While closely aligning with the authors’ original published code and hyper-parameters
[8], Merlin required a distinct approach since only the pretrained volume encoder optimized for the abdominal region was
available, without the report-generation weights. Consequently, we conducted visual instruction fine-tuning by applying a
linear transformation to Merlin’s encoded embeddings, mapping them to the hidden dimension of the Rad LLama2 7B model.
This fine-tuning stage continued for 100 epochs, effectively adapting Merlin for abdominal CT report generation.

B.2. Segmentation Post-processing
Segmentation models can produce noise: voxels incorrectly labeled as tumors or organs. This may cause false positive
cancer detections when RadGPT generates reports from nnU-Net or DiffTumor outputs. To address this, we propose a noise
reduction algorithm (Alg. 4). Segmentation noise usually appears as small structures. Thus, we reduce it with binary erosion.
Afterwards, to restore the original shape of true tumors and organs, we applied binary dilation followed by a voxel-wise AND
with the original tumor segmentation. To further avoid false positives, we perform organ-wise thresholding: we only consider
an organ has tumors if the total volume of its tumor voxels is above a small threshold, defined to maximize per-class F1-Score
on a validation dataset. For our results section, RadGPT thresholds are: 1 mm3 in the pancreas, 150 mm3 in the kidneys, 100
mm3 in the liver, and 50 mm3 for metastases. Figure 15 shows specificity and sensitivity for multiple thresholds. Algorithm
4 and thresholding are not necessary when we generate AbdomenAtlas 3.0 reports from radiologist revised segmentations
or ground-truth segmentation masks. However, it is recommended when using RadGPT without human revision (Figure 2).
Figure 15 displays performance variation for diverse thresholds.

Algorithm 4 Segmentation Noise Reduction
1: Copy the segmentation output.
2: Apply binary erosion to the segmentation to erase small structures, considered noise. We use a 3x3x3 structuring element, erasing any structure smaller than a 3x3x3 cube.
3: Perform binary dilation on the eroded segmentation. We use a 4x4x4 structuring element.
4: Apply a voxel-wise AND operation between the original mask (before erosion) and the dilated mask, recovering the shape of structures not removed by the binary erosion.

B.3. RadGPT Enables Diagnostic Evaluation
In Table 5, we use standard text similarity metrics (common in LLM evaluation) and RadGraph-F1 to evaluate the reports
generated by the AI. RadGPT achieves the highest scores in BLEU, METEOR, and ROUGE. These results align with
the superiority of RadGPT in our diagnostic evaluation (Table 2). Thus, diagnostic accuracy may improve LLM metrics.
However, BERT and RadGraph-F1 are not aligned with the diagnostic accuracy in Table 2—RadGPT has considerably
superior diagnostic accuracy for cancer (Table 2), but it does not have the highest BERT and RadGraph-F1 scores. Moreover,
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Figure 15. Tumor detection sensitivity and specificity for RadGPT with diverse thresholds. Evaluation performed on a private dataset
from a hospital never observed during training (UCSF), detailed in Table 2.

model BLEU METEOR ROUGE-1 R.-2 R.-L BERT RadGraph-F1

CT2Rep 0.26 8.27 12.73 0.95 7.46 45.19 3.01
CT-CHAT 0.15 7.19 10.90 0.54 6.00 45.63 5.69
M3D 0.02 5.05 12.51 1.80 7.32 44.05 1.69
Merlin 0.17 7.30 11.63 0.72 6.38 45.44 6.20
RadFM 0.10 6.90 16.14 2.41 9.26 46.40 2.36

RadGPT-S 0.72 8.82 13.56 1.22 7.64 45.62 4.15
RadGPT-N 0.74 10.47 22.77 2.64 11.89 45.41 2.92

Table 5. Report style impacts standard evaluation metrics. Testing on the same unseen hospital as in Table 2 (UCSF), we evaluate
the fully-automated reports from RadGPT with text similarity metrics and RadGraph-F1[56] (using RadGraph-XL [16], which covers the
abdomen region). RadGPT narrative (N) and structured (S) reports differ in style only, having the same sensitivity and specificity for tumor
detection. However, by mimicking just the style of the test hospital (UCSF, §3.2), our narrative reports (RadGPT-N) achieved considerably
higher METEOR and ROUGE scores. In contrast, our proposed evaluation metric (Table 2) only evaluates the diagnosis in the reports and
it is not sensible to style variations.

NLP metrics are affected by the style of the report. Table 5 includes structured and narrative reports by RadGPT. They
contain the same diagnoses and details, but different style (§3.2), with the narrative reports mimicking the style of the test
hospital. In Table 5, ROUGE [35] was the metric most affected by the style variation. The results show that standard LLM
metrics are influenced by style, but the extent of this influence varies between metrics. Conversely, our proposed LLM-based
sensitivity and specificity metrics are only influenced by the diagnostic accuracy of the reports. In addition, sensitivity and
specificity provide clinicians with an objective and easily interpretable evaluation of AI-made reports, objectively measuring
the clinical usefulness of a vision-language model.



B.4. LLM Prompts
B.4.1. Style Adaptation
Or prompt for style adaptation is the following:

”””
You are provided with a structured radiology report and n other radiology reports that have different writing styles

compared to the structured report.
Task:

Please paraphrase the structured report to match the writing style of the other reports.
Important Guidelines:

1. Do Not Alter Medical Information: Do not change, add, or remove any medical details such as tumor measurements,
types, or locations. You may remove HU values.

2. Maintain Original Meaning: Ensure that the rephrased report conveys the same information as the original structured
report.

3. Match Writing Style: Adapt the language, tone, and structure to align with the provided example reports.
4. Begin your report text with #start and finish it with #end.
5. Provide justification: Go through all medical findings in your rephrased report (e.g., tumor size, no evidence of metasta-

sis) and show where the information comes from in the structured report. Justification should come after #end.
6. Pay attention to the Example Reports: Your writing style must be consistent with the examples.
7. Organization must match: If the examples have an Impressions and Results section, you must add them. If the example

reports talk about all abdominal organs in a single paragraph, you must do so too. You may skip sections you cannot fill
due to lack of information, like patient history.

8. Do not add new findings: If the structured report does not mention the presence or absence of a medical condition (e.g.,
metastases), you must NOT include it in your rephrased report.

9. Keep coherence: Avoid going back and forth between medical findings or organs. For example, do not talk about the size
of a pancreatic tumor, then mention the liver, and then go back to pancreatic findings. Keep the information about each
organ together.

10. Always include an impressions section with the most important findings.
Example of Rephrasing:
Structured Report:

PDAC 1: Pancreatic body/tail. Hypoattenuating pancreas PDAC measuring 6.0 x 3.4 cm (centered on slice 356).
Its mean HU value is 39.17 +/- 29.65, and its volume is 27.519 cm3.

Paraphrased Report:

#start

The patient has a pancreatic adenocarcinoma located in the body and tail of the pancreas, measuring 6.0 x 3.4
centimeters (image slice 356). The tumor is hypoattenuating and has a volume of 27.519 cm3.

#end

Justification:

a. Tumor Type: Maintained as ”pancreatic adenocarcinoma”, originally ”PDAC”.
b. Location: Preserved as ”body and tail of the pancreas”, originally ”Pancreatic body/tail”.
c. Measurements: Kept as ”6.0 x 3.4 centimeters”, originally ”measuring 6.0 x 3.4 cm”.
d. Imaging Slice: Retained as ”image slice 356”, originally ”centered on slice 356”.
e. Attenuation: Maintained as ”hypoattenuating”, originally ”Hypoattenuating pancreas PDAC”.
f. Volume: Kept as ”27.519 cm3”, originally ”volume is 27.519 cm3”.

Note: Removed mean HU value as per guidelines.

”””
Example Reports (Target Style): {examples}
Structured Report to Paraphrase: {structured report}



B.4.2. Enhancing Human Reports
Our Report Fusion prompt is:

”””
You are provided with a CT scan structured radiology report and notes written by a radiologist, about the same CT scan.
Your task is to identify any information in the notes that is not already included in the structured report and add it to the

appropriate sections of the report. Please follow these guidelines:
1. Do not remove any existing information from the structured report. However, you may improve the report’s details using

only relevant information from the notes.
2. Avoid adding any new findings not already mentioned in either the notes or the structured report.
3. Maintain the report’s structure. Carefully place new information in the correct sections inside ”FINDINGS”, consid-

ering which organ the information mentions. For instance, if the notes mention ”cirrhosis,” add it to the ”Liver” section
under ”FINDINGS”.

4. Add new sections if necessary. If the notes refer to an organ not covered in the structured report, create a new section for
it. If the notes mention patient metadata (e.g., sex and age), you may add it to the beginning of the report.

5. Update the IMPRESSION section if needed. Besides the FINDINGS, include any critical information from the notes
in the report’s IMPRESSION section, summarizing or rephrasing it. Do not add new sections if the notes do not provide
concrete information for them.

6. Use consistent terminology. If possible, make the terminology in the sentences you add to the report match the terminol-
ogy in the original structured report.

7. Begin your report text with #start and finish it with #end.
8. Provide justification. Explain where in the report you added each piece of information from the notes. Also, explain why

other information in the report was not removed or altered.
9. Do not write non-informative sentences such as ”Patient metadata: Not available in the provided notes” or ”Sex: Not

specified.”
The notes are as follows:

{clinical info}

The current structured report is:
{structured report}

”””



B.4.3. Labeling/Report Evaluation
Our prompt is:

Instructions: Discover if the CT scan radiology report below indicates the presence of liver tumors, pancreas tumors, or
kidney tumors. Output labels for each of these categories: yes to indicate tumor presence, no for tumor absence, and U for
uncertain tumor presence.

Example: liver tumor presence=yes; kidney tumor presence=U; pancreas tumor presence=no.
Answer with only the labels, do not repeat this prompt.
Follow these rules for interpreting radiology reports:

1. ’Unremarkable’ means that an organ has no tumor.
2. Multiple words can describe tumors. Check both the findings and impressions sections of the report (if present) to

understand if an organ has tumors. Some words include: metastasis, tumor, tumor, mass, cyst, neoplasm, growth, cancer,
index tumor in cancer patients, and tumors listed as oncologic findings.

3. Consider any tumor, hyperdensity, or hypodensity a tumor, unless the report explicitly states otherwise. Many conditions
are not tumors and should not be interpreted as such unless a tumor is also reported along with the disease. Examples
include:
• Liver conditions: Hepatitis, Cirrhosis, Fatty Liver Disease (FLD), Liver Fibrosis, Hemochromatosis, Primary Biliary

Cholangitis (PBC), Primary Sclerosing Cholangitis (PSC), Wilson’s Disease, Liver Abscess, Alpha-1 Antitrypsin Defi-
ciency (A1ATD), Steatosis, Granulomas, Cholestasis, Budd-Chiari Syndrome (BCS), Transplant, Gilbert’s Syndrome,
ulcers, wounds, infections, inflammations, and scars.

• Kidney conditions: Stents, inflammation, postinflammatory calcification, transplant, Chronic Kidney Disease (CKD),
Acute Kidney Injury (AKI), Glomerulonephritis, Nephrotic Syndrome, Polycystic Kidney Disease (PKD), Pyelonephri-
tis, Hydronephrosis, Renal Artery Stenosis (RAS), Diabetic Nephropathy, Hypertensive Nephrosclerosis, Interstitial
Nephritis, Renal Tubular Acidosis (RTA), Goodpasture Syndrome, and Alport Syndrome.

• Pancreas conditions: Pancreatitis, Pancreatic Insufficiency, Cystic Fibrosis (CF), Diabetes Mellitus (DM), Exocrine
Pancreatic Insufficiency (EPI), Pancreatectomy, and Pancreatic Pseudocyst.

4. Examples of specific tumor names include:
• Liver: Hepatic Hemangioma (HH), Focal Nodular Hyperplasia (FNH), Bile Duct Adenoma, Simple Liver Cyst (SLC),

Hepatocellular Carcinoma (HCC), Cholangiocarcinoma (CCA), Hepatic Adenoma (HA), Mucinous Cystic Neoplasm
(MCN).

• Pancreas: Serous Cystadenoma (SCA), Pancreatic Ductal Adenocarcinoma (PDAC), Mucinous Cystadenocarcinoma
(MCC), Mucinous Cystadenoma (MCA), Intraductal Papillary Mucinous Neoplasm (IPMN), Solid Pseudopapillary
Neoplasm (SPN), Pancreatic Neuroendocrine Tumor (PNET).

• Kidney: Renal Oncocytoma (RO), Angiomyolipoma (AML), Simple Renal Cyst, Bosniak IIF Cystic Tumor, Renal
Cell Carcinoma (RCC), Transitional Cell Carcinoma (TCC), Wilms Tumor, Cystic Nephroma (CN), Multilocular Cystic
Renal Neoplasm of Low Malignant Potential (MCRNLMP), Hydronephrosis, Allograft.

5. Consider any benign (e.g., cyst) or malignant tumor as a tumor. Thus, any type of cyst is a tumor.
6. Organs never mentioned in the report have no tumors.
7. Do not assume a tumor is uncertain unless it is explicitly reported as uncertain. Many words can describe uncertainty,

such as: ill-defined, too small to characterize, nonspecific, and uncertain. Reports may express uncertainty about tumor
type (e.g., cyst or hemangioma) but still confirm it is a tumor—in this case, consider the tumor a tumor.

8. Organs with no tumor but other pathologies should be reported as no.

B.5. Organ size standards
Our standards for considering organs as large are based on widely accepted thresholds in radiological and anatomical studies.
For the spleen, we consider volumes greater than 314.5 cm³ as large and over 430.8 cm³ as massive, based on thresholds
provided by Taylor et al. [46]. For the kidneys, a volume exceeding 415.2 cm³ for men is considered large, with the threshold
adjusted for individual kidneys (half of the total volume) [27]. Similarly, a liver volume exceeding 3000 cm³ is deemed large,
which represents an upper limit for larger individuals, such as a 150 kg man, and highly depends on factors like weight and
sex. For the pancreas, volumes above 83 cm³ are classified as large, as per imaging standards discussed by Kondoh et al.
[29].

When size standards depend on variables like weight or sex, we apply thresholds suitable for larger individuals to ensure
comprehensive assessments. This approach minimizes the risk of underestimating organ size variations in diverse popula-
tions.



C. Revisions by Radiologists
In AbdomenAtlas 3.0, organ segmentation masks were created and verified by radiologists through an efficient human-
in-the-loop approach [31]. Conversely, the tumor segmentation masks were suggested by AI and radiologists individually
verified and corrected them. To verify reports efficiently, radiologists first ensured that structured reports correctly described
the already revised per-voxel tumor annotations. This confirmation was key to ensure our deterministic algorithms worked
correctly. Then, to verify our narrative and enhanced human reports, we first used our double-check procedure: an LLM
(Llama 3.1 70B) extracted tumor information from the narrative / human enhanced reports and checked if it matched the
information in the corresponding structured reports. For cases of mismatch, we prompted the LLM to correct the narrative
/ human enhanced reports and repeated the double-check. Any remaining mismatch was sent to radiologists. Mismatches
were also analyzed to improve our prompts. E.g., radiologists identified that a few narrative or enhanced reports introduced
findings absent from the source structured report or human report. To correct this, we started prompting the LLM to justify
each finding by quoting sentences in the source structured report or human report. After the double check, we organized
structured, narrative and enhanced human reports in a table and radiologists could quickly compare them, confirming they
had consistent medical findings.

D. Detailed Tumor Statistics
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Figure 16. Tumor size distribution in AbdomenAtlas 3.0. A large proportion of the CT scans, 35%, presents small tumors only
(≤ 2 cm). The figure’s top row shows histograms of all annotated tumors, while the bottom row focuses on the largest tumor in each
organ. Notably, even considering only the largest tumor per organ, the proportion of small tumors (≤ 2 cm) is large in AbdomenAtlas
3.0: 35.59% for kidney, 38.25% for liver, and 23.68% for pancreas. These small tumor reports are vital for training vision-language AI
models to detect early-stage cancers, where identifying subtle abnormalities is critical for early cancer detection and treatment.



Figure 17. Tumor size probability distribution for liver tumors across all datasets in AbdomenAtlas 3.0. Each subplot represents a
dataset with at least three tumor occurrences. The x-axis shows tumor size (cm), and the y-axis represents the probability of tumors within
each size range. The figure highlights the variability in tumor sizes annotated across datasets, and the significant presence of small tumors.



Figure 18. Tumor size probability distribution for pancreas tumors across all datasets in AbdomenAtlas 3.0. Each subplot represents
a dataset with at least three tumor occurrences. The x-axis shows tumor size (cm), and the y-axis represents the probability of tumors within
each size range. The figure highlights the variability in tumor sizes annotated across datasets, and the significant presence of small tumors.



Figure 19. Tumor size probability distribution for kidney tumors across all datasets in AbdomenAtlas 3.0. Each subplot represents
a dataset with at least three tumor occurrences. The x-axis shows tumor size (cm), and the y-axis represents the probability of tumors
within each size range. The figure highlights the variability in tumor sizes annotated across datasets, and the significant presence of small
tumors.



Figure 20. Tumor size frequency histogram for liver tumors across all datasets in AbdomenAtlas 3.0. Each subplot represents a
dataset with at least three tumor occurrences. The x-axis shows tumor size (cm), and the y-axis represents the number of tumors within
each size range. The figure highlights the variability in tumor sizes annotated across datasets, and the significant presence of small tumors.



Figure 21. Tumor size frequency histogram for pancreas tumors across all datasets in AbdomenAtlas 3.0. Each subplot represents
a dataset with at least three tumor occurrences. The x-axis shows tumor size (cm), and the y-axis represents the number of tumors within
each size range. The figure highlights the variability in tumor sizes annotated across datasets, and the significant presence of small tumors.



Figure 22. Tumor size frequency histogram for kidney tumors across all datasets in AbdomenAtlas 3.0. Each subplot represents a
dataset with at least three tumor occurrences. The x-axis shows tumor size (cm), and the y-axis represents the number of tumors within
each size range. The figure highlights the variability in tumor sizes annotated across datasets, and the significant presence of small tumors.
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