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Figure 1. Application: 6D object pose estimation. We compare our method with the baselines by applying all models on the
pose prediction outputs of GDRNet [17]. 6D pose predictions (bottom left) are used as input to the SO(3)extrapolation methods.
Extrapolated outputs are depicted in green. Our method is able to predict more robust future states based on noisy pose estimates.

A. Experiments and Ablations
A.1. 6D Pose Estimation

In this section, we provide additional details regarding the 6D Pose estimation application introduced in the main paper.
A total of 25k images are generated using BlenderProc2 [4]. The synthetic scenes featured a single object (a mustard
bottle) from the YCB-Video dataset [ 18], with the object’s orientation randomly sampled. We then train GDRNet [17]
on individual (non-sequential) RGB images. The publicly available pre-trained weights are fine-tuned for one training
epoch, without data augmentations.

Figure 1 illustrates simulated trajectories of the object for the configuration-dependent torque scenario. In this
experiment, image sequences are given as input to the pose estimator, producing noisy SO(3) rotation trajectories.
These are then used as input for the SO(3) extrapolation methods. We compare our method to the baselines LEAP,
Conservational, SO(3)-GRU, and SO(3)-nCDE.

As shown in Figure |, the LEAP baseline struggles to handle the rotational behavior effectively. The conservational
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Figure 3. We evaluate the best-performing models’ extrapolation capabilities under irregular sampling from noisy samples fused

from multiple sensors. The trajectories are visualized on the unit sphere S%.
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Figure 4. Evaluating the robustness of the proposed extrapolation methods
for irregularly sampled extrapolation in the wild. The IMU signal from a
tablet is synchronized with an external camera which captures the pose of a
displayed ArUco marker. The resulting noisy and irregular trajectories are
used to evaluate the models’ extrapolation capabilities.

Table 1. Comparison of prediction errors across
different models from irregularly sampled noisy
sensor measurements. Results show mean =+ stan-
dard deviation in rotational geodesic error (RGE).

Model | Prediction Error

LEAP 18.30 £5.45
SO(3)-GRU 11.39 £0.73
SO(3)-nCDE | 75.48 +9.39
Ours 8.11+1.59

approach effectively predicts rotation within this time horizon but does not capture the damping behavior and overshoots
slightly. While the SO(3)-GRU and SO(3)-nCDE baselines perform better, managing to account for the damped
patterns, the extrapolated poses produced by these methods exhibited higher errors than our approach.

A.2. Application: Irregularly Sampled Sensor Fusion

To evaluate the capabilities of the proposed method in real-world
scenarios, we study the case of extrapolation in a sensor fusion appli-
cation. The data rig consists of a tablet depicting an ArUco [5] marker
that streams the onboard inertial measurement unit (IMU) sampled
at 100Hz sensor signal to a system that simultaneously captures the
6D pose of the tablet with a camera (sampled at 30Hz) as shown
in figure Fig. 4. The sensor is then moved manually and tracked,
a particularly challenging (and potentially ill-defined) scenario as
stochastic external torques can influence the device during the ex-
trapolation period. Sensors are calibrated spatiotemporally using a
Levenberg-Marquardt optimization, after which we perform outlier
rejection based on a simple median-absolute-deviation heuristic. We
then capture 24 trajectories with the sensor rig to evaluate the models
trained on the simulated combined external torque scenarios. The
trajectories from the two sensors are naively merged according to the
registered timestamps and then used as input to the models.

Results The results are depicted in Tab. 1, with visualizations in

Model Performance vs. Latent Dimension (Free Rotation)
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Figure 2. Ablating latent dimension vs. predic-
tion performance in GRU vs. neural CDEs on
the freely rotating scenario with 6 = 0.05 and a
prediction horizon of t = 0.8s.

Fig. 3. Our method outperforms the baselines LEAP and SO(3)-nCDE by a large margin. In contrast to the simulated
scenarios, the latter cannot accommodate the irregular, noisy signals and creates errant extrapolations. The GRU
performs competitively, despite the irregular sampling, and produces reasonable estimates. Fig. 3 (d) depicts an example
where the applied torque changes in a stochastic manner during the extrapolation horizon, which the models are not
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Figure 5. Comparison of interpolation methods on a particularly complex and noisy trajectory from the combined external force
scenario. From left to right: Hermite cubic splines with backward differences [10], SO(3) B-splines [14], and SO(3) Savitzky Golay
Filtering [7]. Trajectories represent interpolation and ¢ = 0.2s extrapolation into the future.

able to capture as they have no knowledge of such events.

A.3. Hyperparameters

As the latent dimension significantly impacts model performance for both the GRU and nCDE-based methods, we
provide an additional ablation over the latent dimension (see Fig. 2).

While increasing the latent dimension of the GRU leads to overfitting, SO(3)-SG-nCDEs are robust to changes in
latent dimension and overfitting. SO(3)-nCDEs and SO(3)-SG-nCDEs are trained with a latent dimension of 125, while
GRUs are trained with a latent dimension of 250 and 3 hidden units. LEAP uses a latent dimension of 50; increasing
the latent dimension for this method significantly increases runtime and VRAM but not performance.

A 4. Choosing Integration Paths

Various control signals for neural CDEs have been proposed; most interpolation methods use cubic or higher order
splines [8, 10]. Kidger et al. [8] construct the integration path X € C? as a natural cubic spline over the input sequence.
While this guarantees smoothness of the first derivative, Hermite cubic splines with backward differences are preferred
for CDE integration due to local control [10]. We observe that these choices do not obey the geometric structure of
SO(3); furthermore, they are not robust with respect to sensor noise interpolating the points erratically (see Fig. 5, left).
In general, such higher-order polynomials tend to diverge near the interpolation endpoints and must be extrapolated
with some assumption, for instance, constant velocity [11]. However, when dynamics are complicated, this assumption
is overly simplifying, even more so than assuming conservation of energy as in [9].

Efficient derivative calculations have been proposed for robust SO(3) B-spline interpolation of trajectories in
SO(3) [14]. These can be made suitable for extrapolation with, e.g., constant velocity extrapolation at the endpoint
by constructing a nonlinear optimization to minimize residuals to the measurements, with additional smoothness near
the endpoint. We implement this in Ceres [1], Basalt [16], and Sophus [15] to integrate Lie group constraints into
the manifold optimization. We use the efficient derivative computation of [14] and an additional first-order Taylor
expansion using the computed Jacobians to include a constant velocity endpoint constraint defining the splines beyond
their support interval. While the splines nicely interpolate the noisy trajectory and can be used to extrapolate (see Fig. 5,
center), they still exhibit bias towards endpoints. Moreover, this approach is too computationally expensive to use
during network training. On a 24-Core Intel(R) Xeon(R) CPU, a single batch of 1000 trajectories takes ~ 22 seconds
when maximally parallelized, a fraction of the trajectories we use for training.

On the other hand, the Savitzky-Golay filter provides a reasonable approximation at a low cost. As it merely requires
solving a modest linear system, this means it can be differentiated through to learn a robust weighting suitable for

extrapolation (see Fig. 5, right).

A.5. Model performance vs Input Noise

In Fig. 6, we further evaluate the quality of the predictions over varying time horizons (1, 4, 6, 8) and level of noise
[0.02,0.03,0.04, 0.05]7 on the velocity damping scenario. The results are depicted in Fig. 6. Notably, all methods
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Figure 6. Rotational geodesic error for different input noise levels on the velocity damping scenario. We compare the performance of
the baseline neural CDE and our best performing method (weighted, 2nd-order) with different amounts of simulated noise added to
the simulated dynamical trajectories. Noise is sampled from N (0, §) with § € [0.02, 0.05]r.

suffer from increased prediction errors as noise increases, but our method consistently outperforms the baselines.

B. Implementation Details

We provide further details regarding the five simulated experimental scenarios described in the main paper.

B.1. Experimental Design
For each experiment, we sample an initial orientation according to the strategy in [13], and an initial angular velocity is
sampled according to a truncated normal distribution to avoid degenerate cases with a small angular velocity.
We sample via rejection sampling:
1. Sample X ~ N(0,0)
2. Accept if | X | > 7, otherwise repeat step 1,

witho =0.3andn =0.1

B.2. Moment of Inertia Distributions for Simulation

To evaluate model generalization across different rigid body properties, we simulate trajectories using four distinct
moment of inertia (MOI) distributions. Each distribution is characterized by a base diagonal MOI tensor and additive

noise:
J = diag(Jpase) + €, €~ N(0,0°T3) (M

where Jp, is the base MOI vector and o = 0.2 is the noise standard deviation. The four distributions use the
following base MOI configurations:

I =1[1.0,2.0,3.0] 2)
I =13.0,1.0,2.0] 3)
J® = [3.0,2.0,1.0] )
I —[2.0,3.0,1.0] )

These distributions represent different permutations of the same eigenvalues, creating rigid bodies with varied
principal axis orientations. This approach challenges models to generalize across different rotational behaviors resulting
from the same underlying physics but with different inertial configurations.

B.3. Simulation Scenarios

Freely Rotating. Freely rotating objects are governed by kinematic equations. Without any external torques, they

reduce to the following:
Jw=—-wx Jw (6)



While this equation is simplified and maintains energy conservation, the gyroscopic torque defined through the
cross-product is highly non-linear and can lead to chaotic motion depending on the mass distribution.
Linear Control. In the case of having an identity moment of inertia matrix, the gyroscopic torque can be neglected,
and the kinematic equations

Jw 4+ w X Jw = Tex @)
reduce to:
Jo = Tex (®)

To this end, we simulate a linear controller where all acceleration is driven by an external torque which changes
according to the linear control law 7ex, = J(Aw + b) where A € R3*3 and b € R3.

By defining 7., in this manner, we see that the angular velocity changes according to the external control signal
directly as a function of orientation: w = (Aw + b), which is a useful simplified external torque without highly
non-linear gyroscopic effects. Notably, the baseline SO(3)-nCDE and SO(3)-GRU also perform competitively in this
scenario due to it’s simplicity.

Configuration Dependent Torque. We further consider scenarios where the external torque depends explicitly on the
current orientation, leading to
Jw+ w x Jw = 7e(R) )

where R € SO(3) is the current orientation. This class of torques arises in various physical systems where the
interaction with external fields generates configuration-dependent forcing, such as magnetic dipoles in uniform fields or
gravitational gradients.

Unlike the linear control case, the rotational motion is coupled directly to the orientation state in a global reference
frame, potentially leading to multiple equilibria and complex trajectories. The external torque takes the general form
Text(R) = f(Rv) where v € R? represents some body-fixed vector and f : R?* — R3 is a nonlinear function that
describes the physical interaction in the world frame. We observe this scenario to be most challenging for the models as
the trajectories can exhibit erratic motion.

To limit chaotic behavior, we additionally apply a damping signal (e.g., simulating friction or other dissipative
forces). We initialize the damping matrix D to be negative definite such that lim;_, o, ||w(t)|| = 0 while the object is
also under the effect of the internal gyroscopic motion:

—-0.2 0 0
D=| 0 -0.2 0 (10)
0 0 —0.2

These are combined for the following total external torque:

Text = wchonﬁg(R) + w27—damp(w) (11)

where the weights w; allow for scaling individual contributions. Despite combining multiple effects, these scenarios
often exhibit more predictable behavior than pure configuration-dependent cases, as damping terms provide a stabilizing
effect by dissipating energy from the system.

B.4. Baseline Model Design

We provide additional details regarding the baseline models. Specifically, how we adapted the SO(3)-GRU and
SO(3)-nCDE baselines to predict rotations in SO(3). We also detail the essential components of the conservation
approach [9] that are used to predict rotations directly without confounding pose estimation from images with object
dynamics.

SO(3)-nCDE. We adapt the neural CDE baseline from [8] to predict rotations in SO(3). Hermit cubic coefficients are
directly constructed on the input 9D rotation representation [19] via backward differences. Following [8], the method
encodes an initial value zp, which is then integrated forward in time using forchdiffeq [3] and Dormand-Prince 4/5 with
respect to the constructed spline. The latent representation is then decoded into the 6D rotation representation [6, 19],
and transformed to a rotation matrix with Gram-Schmidt orthonormalization (GSO).



Table 2. Comparison of prediction errors with the conservational approach [9] using a ground truth momentum estimate across
different experimental conditions. Results show mean + standard deviation in rotational geodesic error (RGE). First and second best
results are emphasized.

Extrapolation Method Freely Linear Velocity Configuration- Variable
Horizon Rotating Control Damping Dependent Torque Dynamics
t=0.8 Conservational ([9]) 1.154+0.00 1.25+0.00 1.14 £ 0.00 1.26 +0.00 1.43 £0.00
- s SG-nCDE (Ours) 0.87 £0.05 0.49+0.03 0.42 + 0.02 0.58 4= 0.03 0.89 £ 0.07
‘= 192s Conservational ([9])  1.15 4 0.00 2.05+0.00 1.87 £0.00 2.05 4+ 0.00 2.44 +£0.01
o SG-nCDE (Ours) 1.28 £0.08 0.64 +0.03 0.50 £ 0.03 0.74 + 0.04 1.31 +0.14

SO(3)-GRU. The GRU baseline consists of a multi-layer gated recurrent unit (GRU) RNN with three recurrent units.
The GRU is similarly applied sequentially on each 9D rotation representation, yielding a 6D prediction converted to an
element in SO(3) via GSO.

Conservational [9]. The conservation of energy approach of [9] is designed to learn a rotation representation directly
from images. A sequence of images is used to estimate the object’s momentum, upon which they integrate the
kinematics equations (the authors equivalently use the Lie—Poisson formulation) forward in time and obtain estimates of
the SO(3) state change under energy conservation. They then reconstruct the predicted image sequence, and estimate
predicted rotation accuracy based on image reconstruction.

We observe that the dynamics component of this pipeline is identical to how we simulate the Free Rotation scenario
in Appendix B.3. However, for forecasting rotations from a trajectory, this approach has several limitations:

1. by solving an initial value problem, they can only condition the solve with a single value
2. high sensitivity to the initial momentum estimate
3. cannot handle non-conservative systems (7¢;; = 0)

To study this method more generally, we provide a momentum estimate and similarly integrate the equations of
motion forward in time, evaluating the accuracy directly via rotational geodesic error (RGE) instead of for a downstream
image reconstruction as in [9]. In this way, we decouple the image reconstruction task and the associated image quality
metrics (the authors use pixel mean-squared error) from dynamics estimation. We emphasize that our problem setting
encompasses this task; any dynamics module can be plugged directly into an object pose estimator to forecast rotation.

For a fair comparison, we additionally provide results with a ground-truth momentum estimate, observing that our
method outperforms [9] in all cases but conservational, where the trajectories are parallel to the ground-truth trajectories
(they are offset by the noise of the last observation). The results can be seen in table Tab. 2.

In practice, obtaining an accurate momentum estimate of an unknown object would be challenging to obtain from a
single trajectory as it essentially requires estimating the velocity and mass distribution. The authors demonstrate this on
a limited set of synthetically generated and well-cropped images; however, such an approach does not generalize to
unknown mass distributions, let alone objects, limiting applicability in practice.

C. Additional Background

C.1. Moment of Inertia and Diagonalization

The moment of inertia (MOI) tensor J is defined as the integral of the mass distribution that characterizes a body’s
resistance to rotational acceleration about any axis. For a continuous mass distribution with density 7(r):

Jzz Jyz Jzz



with components:
/77 3 dv
:/17 ac +z )dV
Jzzz/n(r ? +y?)dv
Joy = Jya = —/n(r)wy av
Toe=Jus == [n(x)azzav

Jyz = Joy = */n(r)yde

where r = (7, 2) and r? = 22 + y? + 22. Diagonalization yields the principal moments:

I, 0 0
PUUP=|0 I, 0 (13)
0 0 I3

where [}, are eigenvalues of J and P contains the corresponding eigenvectors as columns.

As any MOI tensor can be diagonalized, we consider only diagonal uniform and non-uniform MOI in our numerical
simulations, with objects rotating in the canonicalized coordinate system. We note that [9] also consider several fixed
non-diagonal MOIs, but these reduce to diagonal cases [2]. Instead, we sample from distributions around non-uniform
MOI tensors, which are varied during training, validation, and testing, forcing models to generalize.

C.2. Exponential and Logarithmic Maps

Definition 1 (Exponential Map on SO(3)). The exponential map Exp : s0(3) — SO(3) is a surjective mapping from
the Lie algebra s0(3) to the Lie group SO(3) defined as:

= 1 1 1
Exp(§) =D —€" =T+€+ € + 56"+ (14)
2] AT

where & € s0(3) is a skew-symmetric matrix.
Geometrically, if € = v for some v € R3 with ||v|| = 0, then Exp(&) represents a rotation by angle 0 about the axis

v/[IvIl-

Definition 2 (Logarithmic Map on SO(3)). The logarithmic map Log : SO(3) — s0(3) is the local inverse of the
exponential map, retrieving the corresponding Lie algebra element from a rotation matrix:

Log(R) = & € 50(3) (15)

such that Exp (&) = R. This mapping is well-defined for all R. € SO(3) where the rotation angle 0 satisfies 0 < 0 < .

The logarithmic map Log is not uniquely defined for rotations of angle § = m, as rotations by 7 radians about
antipodal axes n and —n yield identical rotation matrices, yielding a singularity.

C.3. SO(3) Savitzky-Golay Filtering [7]

The Savitzky-Golay filter on SO(3) solves a least-squares problem to estimate polynomial coefficients that best fit the
noisy rotational data in the Lie algebra, as described in Theorem 10.

The design matrix A € R3(2»+1)x3(r+1) takes the form of a Vandermonde matrix with time-shifted polynomial
coefficients. It is expanded with the Kroeneker product ® and I3, the identity matrix in R3 such that A = A®Is.
A € RCrH+DX(@+1) s defined as:



1 (b —tr) - 2, —t)?

P
N 1 (tfn+1 - tk) %(tfnﬂ - tk)p
A =
1 (tn - tk‘) T %(tn - tk)p

b is constructed by rotational differences in the lie algebra and has the form:

LOg(ik’—nilzl)v

b= :
Log(XjinXy ")V

()V : s0(3) — R3 is the inverse of the hat operator that maps skew-symmetric matrices to vectors.

This formulation brings several advantages over conventional interpolation with splines. It filters robustly in the
region of a point (with an arbitrary support window) and can be solved without iterative optimization. Moreover, the
derivatives are smooth up to the order of the polynomial, which we leverage in the next section to demonstrate universal
approximation based on the results from [10].

D. Proof of Proposition 10

We demonstrate our modified Savitzky-Golay filter satisfies the three properties of a suitable control path for the neural
CDE as described by Morrill et al. [10]. We first restate the proposition regarding the suitability of the control path.

Proposition (10). Ler p(t) be the control path constructed in Def. (7), with polynomial coefficients p based on solving
the optimization problem in Thm. (8). If the maximum rotational difference §,, = maxy, |[Log(XxXy")|| within the
window is bounded, then:

1. ©(t) is analytic and twice differentiable,

2. The derivatives ©'(t) and " (t) are bounded,

3. (t) uniquely minimizes the problem in Thm. (8).

Proof. Smoothness. We begin by demonstrating sufficient smoothness of the map (¢). We observe that Xy, is constant,
and the term Exp (p (¢ — tx; py,)) is a composition of a polynomial and the exponential map.

We note that the logarithmic map Log : SO(3) — s0(3) is not uniquely defined for rotations of angle 7. Specifically,
for ||£]| =  the axis of rotation becomes non-unique, as rotations by 7 about n and —n yield the same rotation
matrix. This requires constraints or assumptions on the magnitude of rotations within any given filter window to ensure
smoothness and injectivity of the maps.

Since the exponential map Exp : s0(3) — SO(3) is smooth and analytic on s0(3) [12], and the polynomial
p (t — tg; py) € C° by definition, we have that ¢(t) € C* provided that |p(t — tx; py,)|| < 7 for all ¢.

In practice, the magnitude of rotational differences encountered in the filtering process is small, especially when
dealing with high-frequency sampling and smooth motion trajectories. Therefore, the norm ||p(¢ — tx; p;.)|| < 7 holds
in most cases. However, to rigorously ensure the smoothness and differentiability of ¢(¢), we impose a constraint that
lp(t — ti; py) |l < = for all ¢ within the filter window as the exponential map is injective on this domain. This can
be achieved by appropriately selecting the filter window size and ensuring the sampling rate is sufficiently high with
respect to the angular velocity.

Next, we consider smoothness of the derivatives -4 ¢(t) and %cp(t) of p(t). We observe that they coincide with the
angular velocity and acceleration, which are defined by [7] as:

(t) = DExp (¢(t)") (1),
(t) = D*Exp (()") [ (8), (1)) +
DExp ((t)") (t)

w
w

where D* f(-) denotes the k-th order directional derivative with respect to f. These are, again, compositions of
analytic functions and the polynomial derivatives, which are bounded and continuous and, therefore, continuously
differentiable. We refer to [7] for a complete derivation of the derivatives.



Boundedness. To show the polynomial coefficients p are bounded, we observe that they are calculated via least squares
with A and b defined as in Appendix C.3. We can see that A has full column rank as long as 2n + 1 > p+ 1. Therefore
the rank of A can be obtained via: rank(A) = rank(/l) - rank(I3). Since both these matrices have full column rank, so
does A, and therefore, the matrix A7 A is symmetric and positive definite. The inverse (A7 A)~! therefore exists and
is bounded.

The data vector b is constructed from the residuals d,,, which are bounded by |8, || < Omax < 7. The entries of

A Tb are sums of the form:
k+n

Th. — (tm - tk)i
R

which are bounded as d, and the time intervals are bounded.
Combining the above, the polynomial coefficients p satisfy:

el < [(ATA)~[||ATb||

Finally, we note that as long as our learned weight matrix W is bounded, this also holds for the weighted adaptation.
W € R3@n=1)x3(2n—1) i a (similarly expanded with ®I5) diagonal matrix with a weight coinciding to each point in
the trajectory window. Then, the bound can be adapted to:

loll < [|(ATWA) [ [|ATWh|

In practice, we find that we do not need to impose any constraints on W and that the network learns to construct the
regression weights that are well-behaved.

Uniqueness. [10] additionally requires the control signal X to be unique. For regular sampling, this follows as cubic
splines pass directly through the control points.

In our case, the polynomial p (¢t — tx; p;) does not pass through the control points. However, we observe that
because the matrix A has full column rank, the reduced optimization problem in Thm. (8) is strictly convex, and thus
the least squares problem attains a unique solution. In the case of irregular sampling, however, this does not hold [ 10,
B.2.1]. As a simple counterexample, consider that a point placed on the estimated trajectory ¢(t) would not alter the
solution due to the strict convexity of the cost function in Thm (8). In practice, we find that the method also behaves
well for irregularly sampled measurements. O
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