What If: Understanding Motion Through Sparse Interactions

Supplementary Material

(a) Attention Score (Ng = 1)

(b) Attention Score (Nq = 3)

Pokes

10 L Queries

Key

Figure A. Query-Causal Attention Pattern Visualization. We
show the resulting attention patterns for our query-causal attention
for different numbers of queries per poke count. We put poke
tokens first, followed by query tokens. (a) In the simplest setting,
with one query per set of pokes, there is one query token per set
of pokes, with each query token attending to one more poke token
than its predecessor. (b) For N, > 1, the poke attention does not
change, but there are multiple query tokens per poke set. Here,
even query tokens for the same poke set do not attend to each other
to enable parallel evaluation during inference.

A. Implementation Details

The hyperparameters for the base model used for all evalu-
ation and qualitative examples are reported in Tab. B. We
train the model for a total of 800k steps with a learning rate
of 5.0 x 107> using the AdamW [26] optimizer and a linear
warmup of 5000 steps. The first 250k steps are trained with
a batch size of 32; for the remainder, we set the batch size to
128.

As described in Sec. 4.1, we randomly sample flow pokes
and their corresponding positions from the given dense flow
grid. We enforce that all flow values are in [—1, 1] by apply-
ing a tanh and obtain a sinusoidal embedding for the « and
y components of the flow. We then find the corresponding
image features using the pokes positions and concatenate
them with the flow features. Finally, we project them us-
ing a residual mapping network consisting of 3 FFN blocks
with RMSNorms [53] and GELU [14] activation function.
These embeddings are then combined with query tokens.
The query tokens represent the locations in the image for
which we want to predict a flow distribution and are real-
ized by a learnable token and the corresponding positional
encoding.

The flow pokes and query tokens are fed to the trans-
former, which is 12 blocks deep and has a width of 768.
The self-attention uses our query-causal attention mask as
introduced in Sec. 3.2. We visualize it in Fig. A. In the

cross-attention, the pokes and queries attend to the image
features, enabling them to learn a global understanding of
the scene. In both attention mechanisms, we use 2D Axial
ROPE [4, 38] to model the spatial relationships of tokens.
The FNNs expand the internal feature dimension by a factor
of three, use SwiGLU [34] as an activation function, and
are conditioned on whether or not the camera is static us-
ing AdaRMSNorms. Whether the camera is static or not
is detected using a simple heuristic: we consider it to be
static if a significant fraction of the scene’s content is static.
This information can be directly derived from the training
tracks. Specifically, we find that considering a camera static
once 40% of the frame move by at most 3px (at our training
resolution of 4482) works well on our training data.

Parameter Value
Batch size 32—128
Optimizer AdamW [26]
Learning rate 5.0 x 107
Betas (0.9,0.99)
Warm-up steps 5000
Steps 800k
Precision bfloat16
Total Parameters 220M
Flow grid resolution 48 x 48
Flow scale [-1,1]
Image size 448 x 448
Mixtures 4
Covariance Full
Given pokes 128
Query factor 15
Depth 12

SA width 768

CA width 768
Normalization RMSNorm [53]
FFN expand factor 3
Activation SwiGLU [34]

Positional encoding
Static scene conditioning

2D Axial RoPE [4, 38]
AdaRMSNorm

Table B. Hyperparameters for our base model. Ablation models
use the same parameters, but only train for 250k steps.

Method Trained On EPE@1 | EPE@2| EPE@5| EPE@10| EPE@100 |
InstantDrag [36] Faces 9.24 9.12 8.82 8.39 7.29
Motion-I12V [35] Generic (Zero-Shot) 29.08 27.40 24.22 20.90 n/a
Ours (full training) Generic (Zero-Shot) 7.64 6.87 5.32 4.20 2.51
Vision Feature Extractor Initialization

Jointly Trained Pre-Trained (Ours) Generic (Zero-Shot) 8.08 6.96 5.38 3.99 2.33
Frozen Pre-Trained Generic (Zero-Shot) 8.30 7.22 5.44 3.78 2.22
Trained from Scratch Generic (Zero-Shot) 8.15 7.51 6.14 4.73 2.57
GMM Component Count

1 Component Generic (Zero-Shot) 7.60 6.87 5.42 4.18 2.59
2 Components Generic (Zero-Shot) 8.98 7.87 5.83 4.08 2.34
4 Components (Ours) Generic (Zero-Shot) 8.08 6.96 5.38 3.99 2.33
8 Components Generic (Zero-Shot) 8.23 7.19 5.57 4.01 2.29
16 Components Generic (Zero-Shot) 8.41 7.26 5.44 3.90 2.34
GMM Covariance Parametrization

Full Covariance, 4 Components (Qurs) Generic (Zero-Shot) 8.08 6.96 5.38 3.99 2.33
Diagonal, 4 Components Generic (Zero-Shot) 8.13 7.09 5.40 3.98 2.24

Table A. Extension of Tab. 1 including our ablations. The experiment is identical to the original one. The ablation models have been trained
for 250k steps compared to 800k for the full training. EPE@N refers to the endpoint error given N pokes.

We find that directly using the output of the transformer
for GIVT [41] produces unreasonable distributions and thus
bad performance. Therefore, we use a simple MLP to project
the transformer’s output which alleviates that problem. Sim-
ilarly, the input MLP consists of a Fourier embedding for
the flow (embedding horizontal and vertical flow separately
and then concatenating their features), followed by a linear
layer that concatenates the Fourier embedding with the local
image features extracted by the image feature extractor £(Z),
and 3 FFN blocks.

B. Ablations

We show an extended version of Tab. 1 that includes quan-
titative results for hyperparameter ablations, which were
used to motivate the choices mentioned in the main paper, in
Tab. A. All comparison models follow the original training
recipe but are only trained until 250k steps due to compute
constraints.

First, we ablate whether to initialize the vision encoder
with pre-trained weights and whether to continue training
them. We find that initializing with pre-trained weights gives
a performance boost in this setting. We hypothesize that, for
very long trainings, both versions might end up performing
similarly well. As noted in Sec. 4.1, freezing the feature
extractor when initializing with DINOv2 [29] empirically
results in a model with reduced instance segmentation ca-
pabilities compared to the unlocked version. We show a
qualitative example of this in Fig. B. This behavior can also
be observed in the quantitative evaluations, where, for low
poke counts, the jointly trained model performs better than
the one with a frozen feature extractor. At high poke counts,
instance segmentation capabilities likely become less rele-

Prediction
) (Jointly Traine@)

Prediction
(Frozen Vis. En(_:.)

Input

Figure B. Jointly training the vision encoder is important. We
train a model with a frozen pretrained vision encoder. The model
struggles with instance-specificity, predicting the same movement
for the woman’s hand as it does for the man’s hand. When jointly
training the vision encoder with the flow poke transformer, the
man’s hand’s movement does not directly influence the woman’s
hand.

vant, as the movement of all instances is likely already given
explicitly via the conditioning.

When ablating the number of GMM components, we find
that adding too many components reduces the model’s per-
formance when conditioned on low numbers of given pokes.
Only predicting a single component results in better quanti-
tative performance at low given poke counts, but, obviously
prevents the model from predicting multimodal distributions
(see, e.g., Figs. 1, 3 and E), omitting a central property of our
model. Parametrizing the covariance matrices as a pure diag-
onal matrix as done in GIVT [41] results in slightly reduced
performance on average. Qualitatively, it also prevents an-
gled distributions that our model successfully uses to express
directional uncertainty (see, e.g., Fig. 1).

Input Motion-I2V DragAPart PuppetMaster Ours Ground Truth

==
o

g’

Figure C. Qualitative Results for Articulated Object Motion
Estimation. We compare on Drag-A-Move [21] with Motion-
12V [35], DragAPart [21], and PuppetMaster [20]. Our model is
qualitatively more capable of capturing complex conditioning with
multiple different pokes than DAP and PM in this setup. Motion-
12V often fails to accurately follow the conditioning locally.

Prediction F|

Input Prediction F|gy

L4
I+Az
0

Figure D. 3D Motion Estimation. We show unconditional 3D
motion estimation samples from an FPT variant fine-tuned on 3D
track data. The in-plane motion prediction F|,, resembles that of
a 2D FPT model, while this version can also successfully predict
plausible out-of-plane motion F|..

C. Additional Qualitative Examples

For additional context for our quantitative results in Tab. 2,
we show visualizations of some samples from that experi-
ment in Fig. C.

We also show additional qualitative examples for and
pointwise motion predictions in Fig. E and samples for dense
motion estimation in Fig. F.

D. Extension to 3D Motion

In this paper, we evaluated the Flow Poke Transformer in
the two-dimensional setting, meaning that the model only
reasons in the image plane. However, the architecture itself

is not limited to this setting and can trivially be extended
to higher dimensions if desired. We show qualitative mo-
tion prediction results from such a version in Fig. D, where
the model also successfully predicts reasonable out-of-plane
motion in full 3D. This model was obtained by continued
training from a 2D FPT checkpoint with 3D trackers ob-
tained using SpatialTrackerV2 [47, 48] on a subset of Open-
Vid1M [27]. The model is capable of predicting movement
towards and away from the camera without any pokes, as
shown by the near-static background and the clearly seg-
mented motion of the animals in all three dimensions. When
combining the predicted flow in Z-direction with a depth
estimation of the input image, it is possible to tell which
parts in the image will be occluded in the future.

Input Image Overlayed Distribution ~ Zoom Distribution Input Image Overlayed Distribution ~ Zoom Distribution

(a) When the head of the giraffe is moving down, we get different flow distributions depending on how close the query is to the head. Since the head can
also move down without the neck following, we get distributions with more emphasis on no movement when the query is further away from the head (first
example). When the query gets really close to the head (second example), the likelihood of movement at the query also increases which can be seen in the

stronger bottom mode.

(b) The model accounts both for the possibility of the tower falling over with the brick’s movement and with it staying stationary. The likelihood of the tower

falling over depends on the velocity with which the brick is removed.

(c) Depending on which hand moves, the cup is predicted to be either stationary or potentially moving together with the hand holding it. Note that the case of
the cup not moving with the hand holding it is very improbable, as visualized by the arrow pointing to that mode having substantially less opacity.

(d) Depending on the height of the position queried on the tree, the magnitude of the predicted movement changes, reflecting typical intuition as to how a tree
moves.

(e) The model is capable of understanding the effect of rotational movements.

Figure E. Visualization of flow distribution for different pokes on the same image. The overlayed distribution visualizes the potential

movement in the overall images, with the opacity of arrows denoting how likely each mode is (the more likely a mode, the less transparent
the arrow).

Input Image Flow Prediction Input Image Flow Prediction Input Image Flow Prediction

vvveror - "
B

Figure F. Qualitative samples visualizing motion predictions inferred from a single image and (optionally) pokes.

	Introduction
	Related Work
	Method
	Problem Setting
	Flow Poke Transformer
	Downstream Applications

	Experiments
	Dataset and Implementation Details
	Evaluation of FPT's Key Abilities
	Comparisons on Motion Prediction
	Segmenting Moving Parts

	Conclusion
	Implementation Details
	Ablations
	Additional Qualitative Examples
	Extension to 3D Motion

