ClaraVid: A Holistic Scene Reconstruction Benchmark From Aerial Perspective
With Delentropy-Based Complexity Profiling

Supplementary Material

8. More on Delentropic Scene Profile

This section expands on the design and interpretation of the
Delentropic Scene Profile. We justify the use of the Beta
distribution and clarify the conditions required for reliable
cross-scene comparison. These clarifications aim to guide
appropriate usage of DSP as a diagnostic tool in structured
3D scene understanding.

8.1. Motivation for Beta Distribution

The choice of distributional model for DSPg was
guided by the analysis of complexity profiles of di-
verse datasets—ClaraVid, Skydrone[l2], Skyscapes[24],
UAVid[25], 3D Matrix City [10], Mill19 [50], and Urban-
Scene3D [11]—observing varied distributional forms con-
tingent on the reconstruction context. A Gaussian distribu-
tion, while apt for uniformly complex scenes, fails to cap-
ture skewed or long-tailed distributions prevalent in hetero-
geneous environments (for example where we have a body
of water or sky regions). Alternatives such as the Pareto
or Gamma distributions accommodate skewness but lack
flexibility for U-shaped profiles, which emerge in scenar-
ios with pronounced bimodal complexity (e.g., a field with
occasional high-detail trees). The Beta distribution, how-
ever, adeptly models this spectrum—uniform, skewed, and
U-shaped—owing to its shape parameters « and (3, requir-
ing only four parameters (including bounds a and b) for a
parsimonious yet expressive fit. This simplicity affords in-
tuitive interpretation: « and 8 directly govern the density’s
form, while a and b anchor it to the empirical delentropy
range. Multimodal distributions were eschewed, as their
complexity—necessitating mixture models with additional
parameters—hampers interpretability, risks overfitting, par-
ticularly given the finite sample sizes of { Hge1 1, }. The Beta
distribution emerges as the best choice, balancing flexibil-
ity, robustness, and theoretical clarity.

8.2. Comparability Across Scenes

The Delentropic Scene Profile provides a statistical sum-
mary of structural complexity and is designed to support
comparisons of scenes in terms of their representational dif-
ficulty. While delentropy provides an absolute measure of
complexity, its reliability for cross-scene comparison hinges
on controlled acquisition conditions. Image resolution plays
a critical role: small variations (e.g., ~10%) tend to pre-
serve the stability of the DSP, whereas more aggressive
change of scales (e.g., >25%) can significantly alter high-
frequency content, shifting the delentropy distribution (e.g.,

roof tiles may become indistinct when downsampled). The
spatial extent of the covered scene is similarly influential.
We have observed that DSP remains stable even under 4x
scaling in area, but larger deviations or differences in se-
mantic composition introduce shifts in the aggregated pro-
file due to increased structural heterogeneity. Furthermore,
the image collection policy—particularly the trajectory and
sampling layout—can induce biases in the captured content,
making structurally similar scenes appear dissimilar under
mismatched acquisition patterns. These observations em-
phasize that to fully leverage DSP as a comparative tool,
one should ensure alignment in resolution, spatial cover-
age, and collection policy—allowing differences in DSP to
reflect genuine variations in scene complexity rather than
artefacts of sampling.

8.3. Implementation Details

The delentropy of an image is obtained by first applying
Gaussian blur to the input image using a spatial kernel of
3 x 3 pixels with a standard deviation of 1.0, reducing high-
frequency noise and mitigating sensitivity to minor textural
variations. Subsequently, spatial gradients along horizontal
and vertical directions are computed via Sobel filters with
kernel size 3 x 3. The resulting gradient field is quantized
into a two-dimensional histogram, the deldensity, employ-
ing 256 bins per axis. This choice is driven by practical
considerations to avoid histogram saturation, an artifact typ-
ically encountered when considering both positive and neg-
ative gradient values. Finally, the normalized deldensity is
used as the joint probability distribution, from which delen-
tropy is calculated.

9. Supplementary Evaluation for DSP

In this section, we evaluate the DSP on real-world datasets
to assess its robustness under varied capture policies and
reconstruction conditions.

9.1. UAVid

To evaluate the transferability and generalization of the DSP
to real-world UAV imagery, we assess its correlation with
reconstruction accuracy on the UAVid dataset. Unlike Clar-
aVid, UAVid features continuous image sequences captured
under linear, L-shaped, and U-shaped trajectories, with no
explicit grid-based coverage. We select six scenes (seq_13,
seq-15, seq-29, seq-31, seq-36, seq-38), prioritizing static
intervals. Full experimental setup provided in Section 10.4.



Table 5. DSP evaluation on UAVid. Higher DSP p correlates
with lower PSNR, SSIM and higher LPIPS.

Scene DSpP
I3 @ B8

Nerfacto[62] Gaussian Splatting [7]
PSNR1 SSIM?T LPIPS| | PSNRT SSIMT LPIPS |

seq38 3984 6.147 2.216 | 22.83 0.637 0.536 25.18 0.857 0.234
seq36 3.990 1.264 0812 | 2280 0.543 0.493 25.10 0.818 0.215
seq29 4.017 3187 1702 | 21.93 0.525 0.512 24.07 0.770 0.238
seq 13 4.018 6911 2159 | 2141 0.497 0.578 23.70 0.730 0.326
seq3l  4.033 1470 1.659 | 21.75 0.463 0.475 23.93 0.718 0.191
seq 15  4.048 9.008 2300 | 21.20 0.487 0.547 22.98 0.709 0.350

Despite a reduction in correlation between DSP and re-
construction metrics, the results—summarized in Table 5—
remain consistent with prior trends observed in synthetic
settings as presented in Figure 6. Notable degradations
are attributed to real-world artifacts such as rolling shut-
ter, motion blur, and the absence of structured spatial cov-
erage, which collectively weaken the delentropy signal.
We identify two recurring failure modes: (i) blurred input
frames that yield reconstructions of unexpectedly high fi-
delity, and (ii) insufficient coverage in low-altitude flyovers
(e.g., single-pass views) that lead to poor reconstructions
despite an average measured delentropy. Visual examples
provided in Figure 7.

9.2. DSP Analysis on Large Reconstructions

To further assess the generalization of DSP in real-world
conditions, we analyze datasets used in recent large-scale
urban reconstruction works, following the experimental
setup of CityGaussian [49]. Specifically, we compute
DSP values on the training and evaluation splits of Urban-
Scene3D [11] and Mill19 [50], which capture diverse urban
geometries under unconstrained conditions. These datasets
include varying levels of structural complexity, from sparse
residential layouts to dense industrial sites. We align our
computed DSP statistics—presented in Figure 8—with pub-
lished reconstruction scores reported in CityGaussian, en-
abling a post-hoc correlation analysis without re-running
the experiments.

As illustrated in Figure 9, we observe a general trend
whereby scenes with higher DSP values correspond to
lower reconstruction quality, particularly in PSNR. For ex-
ample, the Milll9 industrial scene exhibits elevated de-
lentropy (1 > 3.8) and lower PSNR across multiple re-
construction methods, comparable to Urban High scenes
in ClaraVid. This negative correlation persists across
architectures—Mega-NeRF [50], CityGaussian [49], GN-
NeRF [67], Switch-NeRF [68], and Gaussian Splatting [7]-
suggesting that DSP offers a dataset-agnostic signal of
structural difficulty. SSIM and LPIPS exhibited more
variability, and their correlation with DSP was less pro-
nounced than that of PSNR. The consistency of trends
across methods and environments reinforces DSP’s utility
as a lightweight proxy for estimating reconstruction diffi-
culty in real-world benchmarks.
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Figure 6. Correlation between complexity metrics and re-
construction quality on UAVid. Delentropy (blue) exhibits the
strongest and most consistent correlation with PSNR, SSIM, and
LPIPS across both evaluated models, outperforming GLCM tex-
ture entropy (green) and Shannon pixel entropy (red). Metrics are
computed per image and aggregated over the test split.

10. Experimental Setup

10.1. Reconstruction Performance

Throughout our experiments, we utilize the Nerfstudio
framework[62] to systematically benchmark various neural
reconstruction methods. For Nerfacto[62], we adopt the
big configuration. TensoRF[61] is configured with an in-
creased grid resolution of 500°. InstantNGP[40] employs
16 grid levels, a maximum resolution of 8192, and a hash
map size of 22!. Zip-NeRF[63] is re-implemented and used
with default configuration. Gaussian Splatting[7] is initial-
ized from the dataset’s scene-level point cloud with a spa-
tial resolution of 700 cm, restricting point splitting beyond 3
million points to balance memory efficiency and reconstruc-
tion accuracy. Training durations vary across models, rang-
ing from 60 to 720 minutes on an NVIDIA A6000 GPU,
depending on architectural complexity. Across all experi-
ments, we leverage FP16 training to optimize memory us-
age. The reported reconstruction and segmentation results
correspond to a half-resolution output relative to the original
image dimensions, maintaining a trade-off between compu-
tational feasibility and fidelity in large-scale aerial scene re-
construction.

10.2. Performance Across Varying Viewpoints

Both Nerfacto and Gaussian Splatting use the configuration
described previously in Supplementary 10.1. For semantic
learning, Nerfacto incorporates a jointly trained segmenta-
tion field, while Gaussian Splatting learns a separate set of
32-width semantic parameters—trained jointly but indepen-
dent of geometry or positional encodings. Additionally, a 2-
layer CNN classifier refines segmentation on the Gaussian
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Figure 7. Failure cases. Top: Despite low delentropy and detailed Gaussian Splatting reconstruction, large errors arise from poor camera
registration in the blurred input. Bottom: Incomplete scene coverage degrades performance; additionally, the ground truth image exhibits

mild rolling shutter distortion.
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Figure 8. Delentropy profiles for real-world mapping datasets.
The DSP indicates medium complexity, with variations reflect-
ing structural differences across scenes. The profile is computed
across all scene images.

splats. We compute per scene class weighting to balance se-
mantic segmentation classes. The depth for both methods is
obtained from rendering with no additional heads or learned
parameters.

10.3. Semantic Segmentation

We train a DPT[69] model with a DinoV2-L[70] backbone
on both synthetic and real-world UAV datasets. The back-
bone is kept frozen while only the decoder is optimized.
Our training protocol is standardized across datasets, with
the number of steps adjusted proportionally to the dataset
size—ranging from 5,000 to 30,000—to prevent overfitting.
We use each dataset’s native resolution and perform random
crops of 630x630 pixels. Additionally, we uniformly ap-
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Figure 9. Reconstruction quality vs. scene complexity. The re-
lationship between scene complexity, measured by the x mean de-
lentropy, and reconstruction fidelity (PSNR) across different neu-
ral reconstruction methods. A higher delentropy value correspond
to lower PSNR scores, indicating increased reconstruction diffi-
culty.

ply data augmentations such as color adjustments, lighting
variations, rotations, and distortions. Finally, the seman-
tic palette is adapted to the real dataset following the [12]
protocol, where both training and evaluation are done using
reduced pallette.

10.4. UAVid Evaluation

For the UAVid evaluation, we focus on mostly static scenes,
as dynamic object masks are not available. We select six
representative sequences (13, 15, 29, 31, 36, 38), each cov-
ering an area of approximately ~ 0.1 km?. All sequences
consist of 901 frames, training samples are selected at every
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Figure 10. Semantic Segmentation Pixel Label Distribution
The class distribution exhibits a long tail characteristic for aerial
scenarios.

fourth index, while testing ones are chosen at every second
offset (i.e., i = 2 (mod 4)). Stationary frames with min-
imal motion are excluded, as they often are poorly regis-
tered. Additionally, we consider the first and last 100 frames
in train set, to mitigate any potential collection policy errors
and minimize the spatial content outside the region of in-
terest. All images are downsampled by a factor of 2, and
reconstructions are performed using COLMAP[71, 72]. All
other settings for the evaluated models follow the protocol
described in Section 10.1.

11. Claravid

In this section, we present additional insights into Claravid.
Additionally we present a more detailed visual overview in
Figure 12.

11.1. Semantic Complexity

The semantic complexity of Claravid is a direct conse-
quence of its enriched class taxonomy, designed to cap-
ture the nuanced structures present in aerial urban and ru-
ral environments. By extending the conventional label set
to include wire, a class that encapsulates thin linear struc-
tures, and green energy, which aggregates solar panels and
renewable energy infrastructure, the dataset reflects the in-
tricate composition of real-world landscapes. Furthermore,
the pole category has been redefined to encompass slen-
der metallic structures such as communication towers and
high-voltage power lines, thus improving its generalization
for fine-grained segmentation tasks. Additionally, the in-
troduction of urban props and construction props provides
a finer semantic partitioning of the environment, account-
ing for human-centric elements in residential areas and in-
dustrial material clusters, respectively. The inclusion of a
dedicated fent class further enhances the granularity of tem-
porary and semi-permanent structures. This expanded se-
mantic schema not only increases the dataset’s diversity but
also contributes to its delentropy-based complexity profil-
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Figure 11. Dataset Depth Distribution The dataset’s depth values
exhibit a broad distribution with prominent spikes from nadir im-
agery, where ground-level elements dominate. While depths range
from 0-1000 m, the 99th percentile is 192[m].

ing, allowing for a more rigorous quantification of scene
heterogeneity in both structural and semantic dimensions.
We present the label class distribution in Figure 10 and com-
plementary, the depth distribution across the entire dataset
in Figure 11.

11.2. Rendering Pipeline Configuration

To achieve high-fidelity rendering of large-scale aerial
scenes in Unreal Engine 4, we implement targeted mod-
ifications to the rendering pipeline, prioritizing fine de-
tail preservation and visibility consistency at extended dis-
tances. To mitigate the disappearance of distant objects
and enhance detail clarity, we increase the rendering resolu-
tion by setting r . ScreenPercentage=300, effectively
supersampling the scene at 3 times the native resolution.
This adjustment minimizes aliasing artifacts—particularly
pronounced in oblique aerial perspectives—and ensures
that small-scale features remain discernible, albeit at a
higher computational cost justified by the resulting visual
fidelity. Shadow integrity for distant fine elements, such
as foliage and thin structures, is preserved by reducing
r.Shadow.MinRadius to 0.001, which enables shadow
casting for geometrically narrow features that would oth-
erwise be lost. Shadow map resolution is also increased
to 2048%2048 for objects considered having fine details,
maintaining sharp shadow edges across expansive terrains.
Geometric fidelity is ensured by disabling level-of-detail
(LOD) transitions, preventing mesh simplification that de-
grades structural complexity at greater distances or alti-
tudes, a choice prioritizing rendering quality over real-time
performance scalability. Similarly, we disable distance-
based object culling to maintain persistent visibility of all
scene elements, eliminating sudden visibility discontinu-
ities that disrupt spatial and temporal coherence.
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Figure 12. ClaraVid Modalities. Overview of the 8 UAV missions, showing representative frames with RGB, depth, semantic, instance,
and dynamic annotations, along with scene-level point cloud views.
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