
A. Additional Baselines and Ablation Studies
Beyond the evaluation in Sec. 5, we test additional baselines,
including reasoning models that have proven successful in
program synthesis tasks [89]. We evaluate Qwen2.5 Coder
(14B) [75], which complements Qwen2.5 Coder (32B) from
Sec. 5.2, and reasoning models from the DeepSeek-R1 Qwen
family (14B and 32B) [90]. We also evaluate TikZero (Base),
a variant of TikZero (Cos) without the trainable probe and
gating mechanism, to assess their contributions.

As shown in Tab. 5, TikZero (Cos) achieves the highest
performance, surpassing TikZero (Base) on both DreamSim
and CLIPScore metrics and in average performance. These
results validate the probe and gate design. Additionally,
Qwen2.5 Coder (14B) performs worse than both TikZero
(Cos) and, as expected, its 32B variant in Tab. 3. The
results are consistent with our findings in Sec. 5.1 that
TikZero (Cos) outperforms end-to-end trained baselines
of comparable size. Notably, the reasoning models show
the lowest overall performance, even compared to Qwen2.5
Coder (14B), indicating that reasoning capabilities alone
are insufficient for graphics program synthesis and more
domain-specific post-training may be needed.

B. Supplementary Comparison with DeTikZify
Tab. 6 shows in detail how TikZero’s inverse graphics model
(hereafter referred to as DeTikZifyv2) compares against De-
TikZifyDS (7b), previously the best performing DeTikZify
model, as evaluated on the test split of DaTikZv3 . De-
TikZifyv2 clearly outperforms its predecessor across all
evaluated metrics. Below, we briefly outline key differences
in training and inference beyond what we described in Sec. 4.
For a comprehensive description of the foundation on which
DeTikZifyv2 builds, we refer to Belouadi et al. [2].

Training Similar to DeTikZify, DeTikZifyv2 employs a
dense layer as the modality connector between the vision
encoder and text decoder. However, for pretraining this layer,
we replace the MetaFig dataset [2] with the substantially
larger ArxivCap dataset, extracting 1 million (figure, caption,
OCR) triplets. During fine-tuning, we randomly substitute
inputs with synthetically generated sketches to support hand-
drawn inputs. To generate these sketches, we fine-tune the
image-editing model UltraEdit [91] on a dataset of real,
human-created scientific sketches [2]. The resulting model,
UltraSketch, achieves a congruence coefficient (CC) [92]
of 0.74 with said sketches, compared to 0.72 for the previous
model used with DeTikZify. Additionally, we generate
synthetic sketches using traditional image transformations
such as random displacement fields. While these sketches
exhibit less diversity, they better preserve text rendering and
achieve a comparable CC of 0.75. Averaging the sketch
representations from both methods increases the CC to 0.82,
demonstrating their complementary nature.

Inference DeTikZify implements a Monte Carlo Tree
Search-based inference algorithm to iteratively refine out-
puts. As a reward signal 𝑟 , it computes the cosine similarity
𝑟cos = cos(pool(𝒙), pool(𝒚)) between image patch embed-
dings 𝒙, 𝒚 of input images and compiled outputs via a learned
pooling function. Since DeTikZifyv2 fully fine-tunes the vi-
sion encoder and uses its patch embeddings directly, it cannot
compute pooled embeddings in the same way. As an alterna-
tive, inspired by popular machine translation metrics [93–96],
we experiment with computing the Earth Mover’s Distance
(EMD) [97, 98] with image patch embeddings. Given the dis-
tance matrix 𝑫, where 𝐷𝑖, 𝑗 = cos(𝑥𝑖 , 𝑦 𝑗 ), EMD is defined
as follows:
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When correlating reward scores computed as 𝑟cos from De-
TikZify and 𝑟EMD = EMD(𝑥𝑖 , 𝑦 𝑗 ) from DeTikZifyv2 with
human judgments from Belouadi et al. [2], we find that
𝑟EMD enhances correlation with humans (0.456 segment-
level and 0.911 system-level Spearman’s 𝜌), compared to
𝑟cos (0.436 and 0.642, respectively). This demonstrates that
DeTikZifyv2 not only supports the inference algorithm but
improves upon DeTikZify’s capabilities.

C. Supplementary Inference Details
To instruct general-purpose models to generate TikZ code,
we employ a consistent prompt across all models (GPT-4o,
Qwen2.5 Coder (32B), and IDEFICS 3 (8B)) originally
engineered by Zhang et al. [4]. For each figure, we replace
the <caption> placeholder with the specific caption:

Please generate a scientific1

figure according to the following2

requirements: <caption>. Your output3

should be in TikZ code. Do not include4

any text other than the TikZ code.5

D. Supplementary Experimental Results
Tab. 7 presents detailed evaluation metrics scores for the
low-resource training experiments discussed in Sec. 6.2. The
results show a consistent degradation in performance across
all metrics as both the amount of training data and the number
of layers decrease, a trend effectively captured by the AVG
scores also shown in Tab. 4.



E. Annotator Demographics
Our annotation team consists of thirteen experts with ex-
tensive research experience in Machine Learning, Natural
Language Processing, or Computer Vision. The team in-
cludes one male faculty member, four female PhD students,
four male PhD students, and four male researcher scientists
from a research institute. We deliberately selected expert
annotators based on findings by Belouadi et al. [3], which
demonstrated that crowd workers often lack the necessary
research background to provide reliable annotations for sci-
entific figures. To mitigate potential biases, each annotator
received the tuples and items within the tuples in randomized
order.

F. Additional Examples
Figure 5 showcases examples5 from DaTikZv3 with per-
missive licenses. Additionally, Tab. 8 presents randomly
sampled tuples from our human evaluation with the highest
and lowest rated instances highlighted. The results show
that AutomaTikZv2 (LLM) and TikZero (Cos) are more
frequently selected as the worst models (four and three times,
respectively), while TikZero+ and GPT-4o are more often
chosen as the best models (both three times), which aligns
with our findings in Sec. 5.3. Finally, Fig. 6 illustrates exam-
ple programs generated by TikZero+ and AutomaTikZv2
(LLM), demonstrating how TikZero+ utilizes advanced TikZ
features, whereas AutomaTikZv2 (LLM) employs only basic,
simple commands.

5sourced from https://github.com/PetarV-/TikZ, https://
github.com/janosh/tikz, https://tikz.net, and https://arxiv.
org

https://github.com/PetarV-/TikZ
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(a) A diagram representing a recurrent neural network consisting of several
LSTM blocks, processing the input sequence simultaneously forwards and
backwards (to exploit both directions of temporal dependence). Contains
some rather tight manoeuvering.
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(b) A plot comparing the distribution functions of Bose-Einstein, Boltzmann,
and Fermi-Dirac statistics as a function of the reduced chemical potential
𝛽 (𝜖 − 𝜇) . This visualiation highlights the differences between the three
types of distribution functions, which are used to describe the behavior of
particles in different statistical systems.
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(c) Tree with aligned matrix. A probability tree with an aligned matrix
listing the possible outcomes, their probabilities and three columns for
events described in later tasks. It uses the grahdrawing library and requires
LuaLaTeX.
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(d) Our approach is a modified version of meta-seq2seq. A transformer
decoder (TD) is trained to produce a sequence of actions 𝑎

𝑄

1 , . . . , 𝑎
𝑄
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given a query instruction 𝐼𝑄 . The context are demonstrations (𝐼𝑘 , 𝐴𝑘 )
produced by our generative model. We use a transformer encoder-decoder
(T) to encode instructions and state 𝑆 and a transformer encoder (TE) to
encode actions. The transformers that process instructions (pink blocks)
receive state 𝑆 as the input of the encoder.

Figure 5. Representative examples from DaTikZv3 (also present in DaTikZ and DaTikZv2), with permissive licenses.

Models DSim↑ KID↓ CLIP↑ cBLEU↑ TED↓ MTE↑ AVG↑

TikZero (Cos) 52.829 5.103 10.051 1.603 65.51 82.291 64.309
TikZero (Base) 52.373 5.225 9.428 1.589 65.286 83.128 63.129
Qwen2.5 Coder (14B) 48.352 12.988 19.761 0.229 60.304 93.285 58.894
DeepSeek-R1 Qwen (32B) 47.573 8.887 21.201 1.388 64.928 66.225 57.252
DeepSeek-R1 Qwen (14B) 44.616 15.43 21.695 0.842 63.323 36.11 31.102

Table 5. System-level scores× 100 for TikZero (Cos) and additional baselines. Overall, TikZero achieves the strongest average performance
across metrics.



Reference Figures Synthetic Sketches

Models DSim↑ KID↓ cBLEU↑ TED↓ MTE↑ DSim↑ KID↓ cBLEU↑ TED↓ MTE↑

DeTikZifyDS (7b) 75.46 0.842 2.953 56.851 84.019 67.379 0.766 1.541 59.589 84.401
DeTikZifyv2 80.503 0.626 6.105 54.946 93.326 74.584 0.751 3.356 58.32 93.858

Table 6. System-level scores × 100 for DeTikZifyv2 and DeTikZifyDS (7b) on both reference figures and synthetic sketches generated with
UltraSketch from the test split of DaTikZv3. Best scores are in bold, and arrows indicate metric directionality. Note that we compute
DreamSim using updated models [68], whereas Belouadi et al. [3] used the original models in their work [67].

Data Intv. DSim↑ KID↓ CLIP↑ cBLEU↑ TED↓ MTE↑ AVG↑

100% 1 52.771 5.127 9.949 1.607 65.516 82.292 92.411
100% 2 52.311 5.2 9.955 1.484 65.473 82.588 87.557
100% 4 51.794 5.688 8.886 1.429 65.399 83.988 82.254
100% 8 51.59 5.933 9.818 1.371 65.608 83.679 76.545
50% 1 52.106 5.835 8.527 1.454 65.605 83.599 77.478
50% 2 52.143 5.103 9.315 1.393 65.355 82.924 85.249
50% 4 50.492 6.689 8.852 1.459 65.951 78.456 47.381
50% 8 50.093 6.738 7.999 1.379 65.963 78.923 40.816
25% 1 51.55 6.055 9.12 1.472 66.237 77.961 49.967
25% 2 51.231 6.152 8.943 1.43 65.714 77.566 54.942
25% 4 49.859 7.715 7.316 1.41 66.128 79.704 32.12
25% 8 49.179 7.764 6.495 1.434 66.009 79.9 29.774
12.5% 1 50.485 6.25 7.568 1.509 65.8 80.816 56.055
12.5% 2 50.152 7.129 6.353 1.275 66.045 81.05 33.817
12.5% 4 49.667 7.031 6.474 1.221 65.892 82.634 37.914
12.5% 8 48.827 8.154 5.054 1.11 65.813 80.738 16.25

Table 7. System-level scores × 100 TikZero (Cos) trained on varying fractions of data and intervals of cross-attention layers. Bold and
underlined values denote the best and second-best scores for the whole table, respectively. Cell shading illustrates score magnitudes. Arrows
indicate metric directionality.



Reference AutomaTikZv2 TikZero TikZero+ GPT-4o

An illustration of the reduction from densest
𝑘-subgraph to u-rcp. On the left there is
a simple undirected graph 𝐺 with a single
edge. The 2-reduced directed graph of 𝐺 is
on the right. Each vertex of 𝐺 is replaced
by 2 · 2 = 4 copies with a bidirectional edge
connecting any two copies of the same vertex,
and an outgoing edge from each copy to the
single edge-vertex 𝑒.
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Table 8. Alternating rows display randomly selected tuples from the caption and image similarity human evaluation task (cf. Sec. 5.3). The
frames of highest and lowest rated instances are highlighted in green and red, respectively.



TikZero+

1 \documentclass[border=10pt]{standalone}
2 \usepackage{pgfplots}
3 \pgfplotsset{width=7cm,compat=1.8}
4 \begin{document}
5 \begin{tikzpicture}
6 \begin{axis}[grid=major,view={210}{30}]
7 \addplot3+[domain=-5:5,surf]
8 {exp(-x^2-y^2)*x};
9 % connect classical points

10 \addplot3+[mark=*,only marks,blue,samples
at={-4.473,-1.463,1.463,4.473}]

11 {exp(-x^2-y^2)*x};
12 \end{axis}
13 \end{tikzpicture}
14 \end{document} TikZero+

\documentclass[12pt]{article} 1

\usepackage{amsmath,amsthm,amssymb,amsfonts} 2

\usepackage{tikz} 3

\usepackage{pgfplots} 4

\usetikzlibrary{arrows.meta} 5

6

\begin{document} 7

8

\begin{tikzpicture} 9

\begin{axis}[view={60}{30}] 10

\addplot3 [surf] {3*x^2 + y^2}; 11

\end{axis} 12

\end{tikzpicture} 13

14

\end{document} 15

AutomaTikZv2

1 \documentclass[11pt,a4paper]{article}
2 \usepackage{amsmath}
3 \usepackage{amssymb}
4 \usepackage{color}
5 \usepackage{tikz}
6

7 \begin{document}
8

9 \begin{tikzpicture}[scale=0.5]
10 \draw [thick,->] (-2,0) -- (2,0);
11 \draw [thick,->] (0,-2) -- (0,2);
12 \draw [thick] (1.8,0) arc (0:180:1.8);
13 \node [right] at (2,0) {$\mathrm{Re}(\omega)$};
14 \node [above] at (0,2) {$\mathrm{Im}(\omega)$};
15 \node [right] at (1.8,1) {$\Gamma$};
16 \end{tikzpicture}
17

18 \end{document}

AutomaTikZv2

\documentclass{article} 1

\usepackage{amssymb} 2

\usepackage{amsmath} 3

\usepackage{pgfplots} 4

\pgfplotsset{compat=1.14} 5

\usepackage{tikz} 6

\usetikzlibrary{arrows} 7

8

\begin{document} 9

10

\begin{tikzpicture}[scale=3] 11

\draw[fill=green!15] (1,0) -- (2,0) -- (2,2) --
(1,2) -- (1,0);

12

\draw[thick] (1,0) -- (1,2); 13

\draw[thick] (0,1) -- (2,1); 14

\node[below] at (1,0) {$0$}; 15

\node[below] at (2,0) {$1$}; 16

\node[left] at (1,2) {$1$}; 17

\node[left] at (0,1) {$0$}; 18

\node[above] at (1.5,1.5) {$\gamma$}; 19

\draw[->,thick] (0,0) -- (1,0); 20

\draw[->,thick] (0,0) -- (0,1); 21

\draw[->,thick] (0,0) -- (0.5,0.5); 22

\draw[->,thick] (0,0) -- (1.5,0.5); 23

\draw[->,thick] (0,0) -- (0.5,1.5); 24

\draw[->,thick] (0,0) -- (1.5,1.5); 25

\draw[->,thick] (0,0) -- (2,0); 26

\draw[->,thick] (0,0) -- (0,2); 27

\draw[->,thick] (0,0) -- (1,1); 28

\end{tikzpicture} 29

30

\end{document} 31

Figure 6. TikZ programs generated by TikZero+ (top) and AutomaTikZv2 (LLM; bottom) corresponding to the figures shown in the first
row of Fig. 1 in the same order.


