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A. Additional experiments

In this section, we provide additional experimental results
and analyses that complement our main findings. First,
we showcase the consistent improvements brought by our
method across different models and datasets (Section A.1).
We also report the computational overhead analysis includ-
ing inference time and GPU memory requirements (Sec-
tion A.2). Then we extend our empirical analysis of class-
expert templates to additional datasets and models (Sec-
tion A.3). We follow with a detailed assessment of our
expert identification method’s accuracy (Section A.4) and
an in-depth explanation of the different unsupervised met-
rics we investigated (Section A.5). We present a compre-
hensive study of the relationship between entropy and IoU
across different settings (Section A.6). For reproducibility,
we provide the complete list of ImageNet templates used
across all experiments (Section A.7). Finally, we provide
qualitative visual results that demonstrate the effectiveness
of our class-expert fusion approach (Section A.8).

A.1. Performance improvements across models

Fig. 7 provides a graphical view across datasets of the
improvement in mloU when plugging FLOSS on existing
OVSS models. This demonstrates the general applicability
of our approach, which can be seamlessly integrated with
existing models without requiring any additional training.
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Figure 7. Performance boost with FLOSS. We report the mloU
difference when using FLOSS on top of an existing OVSS model.
Our training-free method consistently improves all OVSS models

across different datasets through class-expert template identifica-
tion.
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A.2. Inference time and GPU memory

We provide the results of the inference time and GPU
memory of FLOSS when it is plugged to existing open-
vocabulary models across different datasets. As shown
in Tab. 8, the computational overhead varies significantly
based on the number of classes in each dataset. For datasets
with a smaller number of classes such as CS [1] (19 classes)
and VOC20 [2] (20 classes), FLOSS incurs minimal com-
putational overhead, with modest increases in both infer-
ence time and GPU memory usage. However, for datasets
with a larger number of classes like PC59 [4] (59 classes)
and ADE [7] (150 classes), the overhead becomes more
substantial, with notable increases in both inference time
and peak GPU memory consumption, reflecting the scal-
ing nature of cosine similarity computations across class-
experts. It is worth noting that NACLIP [3] exhibits par-
ticularly high inference times on CS for both the baseline
and FLOSS, which stems from the preprocessing pipeline
in the original NACLIP implementation that resizes CS im-
ages to 1120x560 resolution and employs sliding window
inference with 224 x 224 crops and a stride of 112, requiring
36 overlapping patch inferences to process each complete
image.

cs vOC20 PC59 ADE

Inf. time GPU mem. | Inf. time GPU mem. | Inf. time GPU mem. | Inf. time GPU mem.
CLIP-DINOiser 31 1203/1274 23 1184/1263 24 1204/1397 23 1252/1661
+FLOSS 50 1204/1940 35 1184/2034 83 1211/7225 339 1295/19249
MaskCLIP 30 1195/1259 23 1175/1251 23 1195/1436 22 1242/1652
+FLOSS 59 1196/1899 43 1175/1986 108 1202/7142 421 1286/19240
NACLIP 100 449/571 18 365/408 23 373/458 22 422/739
+FLOSS 249 449/571 41 366/1232 91 377/1092 274 444/4854

Method

Table 8. Inference time and GPU memory analysis. We report
inference time (ms) and GPU memory usage (current/peak in MB)
for different OVSS models with and without FLOSS across four
datasets.

A.3. Empirical observations on other settings

The foundation of our work is the observation that there ex-
ist class-wise expert templates. We extend here our initial
analysis to 4 datasets, for both CLIP-DINOiser [6] in Fig. 9
and NACLIP in Fig. 10, showing that our initial observa-
tions hold in these settings. Interestingly, we note that for



PASCAL CONTEXT 59, “template-averaging” performs
already very well and most individual template underper-
form it. Arguably, this might be related to the proximity of
PASCAL VOC 20 with ImageNet for which the templates
of CLIP were engineered [5].

A.4. Quality of experts

We report the quality of our estimated top-4 experts using
entropy as unsupervised metric for both CLIP-DINOiser in
Fig. 11 and NACLIP in Fig. 12. In details, for each class
k € [1, K], the quality is computed as the normalized inter-
section between the set of estimated experts &, and the true
set of experts &, as detailed in Eq. (8). For each dataset,
we also report the average accuracy over all classes, i.e.,
% > & Pk» shown as a horizontal line.

While we observe a high variability of the quality across
classes, our average top-4 quality is around 50%, meaning
that half of our estimated expert templates are usually ac-
tual class-experts. We also note that the identification of
experts on PASCAL VOC 20 is less accurate, which may
stem from the rare class-experts on said dataset and the high
performance of the “template-averaging” model.

A.5. Unsupervised metrics for expert identification

In Sec. 5.2, we compared entropy to three other metrics for
expert identification. We provide here details about these
metrics. Given a single-template classifier W (7,,,) making
predictions on unlabeled images, (i) Avg. Probability com-
putes the average probability of all pixels predicted as class
k by W (T,,). Higher values indicate better performance in
this case. It writes:
Crm,k

Z softmax(q;)x (1)

=1

Avg.Prob, (Ty,) = -
m,k

(i) MaNo is based on low density separation (LDS) as-
sumption. The LDS principle suggests a direct correlation
between the magnitude of logit values and a model’s gen-
eralization capabilities, so the higher the MaNo score, the
better it is. For each class k, we compute the average L,
norm of the probability vectors for pixels predicted as that
class:

T =

k

C‘m K
1
MaNoy, (Tr,) = (C’ 7 2 Z |softrun(q;)x|” |
- @)

where softrun is the normalization function used to avoid
error accumulation, and we use p = 4 in practice, as done
in the original paper.

(iii) Inter-to-Intra (ITI) is a class ratio that quantifies feature
separability by examining the relationship between inter-
class separation and intra-class compactness for each class

k. The intra-class compactness measure Djy,x(7r) cal-
culates the average squared Euclidean distance between the

global class feature centroid f; and the class-specific fea-
tures f,i (denoting the average feature for class k£ in image
1) across all N training images, capturing feature variability
within the class.

Conversely, the inter-class separability measure Diyerx (7rn)
computes the average squared distance between the target
class centroid fi, and all other class centroids f;, measur-
ing how distinctly a class is represented in feature space.
The ITI ratio ITI;(7,,) then provides a normalized metric
where higher values indicate well-separated and compact
feature representations, with f;, representing the class k’s
feature centroid across the entire dataset, N representing
the training dataset size, and K signifying the total number
of semantic classes.

Dintra,k(Tm)’ Dinter,k (Tm) and ITI, (Tm) write as:

N — —
Dmtrak Z ka - f]iH%
= o )
Dmterk( Z ka - f’LH% (3)
mer Tm
ITIK(Tm) = 5 : iET ;

A.6. Studying the relation of entropy and IoU

We analyze the relationship between entropy and IoU across
different models and datasets. Figs. 13 and 14 show this
relationship for CLIP-DINOiser, while Figs. 15 and 16
present the same analysis for NACLIP. For each class,
we plot the entropy and IoU of individual templates (col-
ored dots) against the performance of the original CLIP
“template-averaging” (dotted line). The number of valid
templates (those predicting at least one pixel for the class)
is indicated in parentheses next to each class name.

A.7. ImageNet templates

For reproducibility, we provide the complete list of 80 Im-
ageNet templates used consistently across all our experi-
ments. These templates are applied in the exact order listed
below, ensuring consistency across all reported results:

"a bad photo of a {}.’

1. ’a photo of many {}.

2. ’asculpture of a {}.

3. ’aphoto of the hard to see {}.’

4. alow resolution photo of the {}.
5. ’arendering of a {}.
6

7

8

e

*graffiti of a {}.
’a bad photo of the {}.’
. ’a cropped photo of the {}.
9. ’atattoo of a {}.
10. ’the embroidered {}.’
11. ’a photo of a hard to see {}.
12. ’abright photo of a {}.
13. ’aphoto of a clean {}.
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Figure 8. Qualitative results on Cityscapes. The figure shows qualitative results displaying predictions from individual class-experts
when integrating FLOSS with CLIP-DINOiser on Cityscapes images. The visualization demonstrates how the fused prediction effectively
combines the predictions made by class-experts within their respective domains of expertise, outperforming the baseline CLIP-DINOiser
prediction.
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*a photo of a dirty {}.’

*a dark photo of the {}.

’a drawing of a {}.

*a photo of my {}.

’the plastic {}.

’a photo of the cool {}.’

*a close-up photo of a {}.
’a black and white photo of the {}.’
’a painting of the {}.

’a painting of a {}.’

’a pixelated photo of the {}.’
>a sculpture of the {}.’

*a bright photo of the {}.
*a cropped photo of a {}.’
“a plastic {}.

*a photo of the dirty {}.

’a jpeg corrupted photo of a {}.
’a blurry photo of the {}.’
*a photo of the {}.

*a good photo of the {}.

’a rendering of the {}.

’a {} in a video game.’

*a photo of one {}.
’adoodle of a {}.

*a close-up photo of the {}.’
’aphoto of a {}.

’the origami {}.’

’the {} in a video game.’

“a sketch of a {}.

’a doodle of the {}.

’a origami {}.

*a low resolution photo of a {}.’
’the toy {}.

*a rendition of the {}.

’a photo of the clean {}.

’a photo of a large {}.

*a rendition of a {}.’

’a photo of a nice {}.

’a photo of a weird {}.

*a blurry photo of a {}.

*a cartoon {}.

55. ’artofa {}’

56. ’asketch of the {}.

57. ’aembroidered {}.

58. ’a pixelated photo of a {}.’
59. ’itap of the {}.

60. ’a jpeg corrupted photo of the {}.’
61. ’a good photo of a {}.

62. ’aplushie {}.

63. ’a photo of the nice {}.
64. ’a photo of the small {}.
65. “a photo of the weird {}.’
66. ’the cartoon {}.’

67. ’art of the {}.

68. ’a drawing of the {}.

69. ’a photo of the large {}.
70. ’ablack and white photo of a {}.’
71. ’the plushie {}.’

72. ’adark photo of a {}.

73. ’itap of a {}’

74. ’graffiti of the {}.

75. ’atoy {}’

76. ’itap of my {}.

77. *aphoto of a cool {}.

78. ’aphoto of a small {}.
79. ’atattoo of the {}.

A.8. Qualitative results

In this section, we provide qualitative visual results to
complement our quantitative analysis. Fig. 8 presents ex-
ample segmentation results demonstrating the effective-
ness of our class-expert fusion approach when applied to
CLIP-DINOiser on Cityscapes images. The visualizations
clearly illustrate how FLOSS effectively combines predic-
tions from different class-experts, each contributing their
specialized knowledge for their respective classes of exper-
tise. Notably, we observe the significant impact of class-
specific experts, such as the sky-expert, on the final fused
prediction, showcasing substantial improvements in seg-
mentation quality compared to the baseline CLIP-DINOiser
predictions.



:&*ngmw :

— ar

“T + i i . & S +— t 7 ;?:? S AE A Ti’ [~
I A " B k B
: T+ L : Lo
w“’f«“"@@fﬁfﬁ v*g@w’m‘ie s f«gﬁmf@‘eﬁvy‘w‘y *Jy‘f S8 E e j’
(b) Cityscapes (c) PASCAL CONTEXT 59 (d) PASCAL VOC 20
Figure 9. Individual template vs average templates (CLIP-DINOQiser).
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Figure 10. Individual template vs average templates (NACLIP).
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Figure 11. Quality of the estimated templates (CLIP-DINOiser). For each class k, we report the accuracy of the estimated top-4 experts
&y, as the normalized intersection with the set of true experts from that class, i.e., . The dash line indicates the average across classes.
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Figure 12. Quality of the estimated templates (NACLIP). For each class k, we report the accuracy of the estimated top-4 experts & as
the normalized intersection with the set of true experts from that class, i.e., £. The dash line indicates the average across classes.
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Figure 13. Entropy and IoU per template (CLIP-DINOiser, Cityscapes). Each plot reports, for a given class, the entropy and IoU of
all individual template (colored dots) as well as the original CLIP averaged-templates performance (dotted line). Note that we consider

templates valid only if they predict more than O pixels for that class, and therefore report the number of valid templates in parenthesis next
to the class name.
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Figure 14. Entropy and IoU per template (CLIP-DINOiser, PASCAL CONTEXT 59). Each plot reports, for a given class, the entropy
and IoU of all individual template (colored dots) as well as the original CLIP averaged-templates performance (dotted line). Note that
we consider templates valid only if they predict more than O pixels for that class, and therefore report the number of valid templates in
parenthesis next to the class name.
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Figure 15. Entropy and IoU per template (NACLIP, Cityscapes). Each plot reports, for a given class, the entropy and IoU of all
individual template (colored dots) as well as the original CLIP averaged-templates performance (dotted line). Note that we consider
templates valid only if they predict more than 0 pixels for that class, and therefore report the number of valid templates in parenthesis next

to the class name.
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Figure 16. Entropy and IoU per template (NACLIP, PASCAL CONTEXT 59). Each plot reports, for a given class, the entropy and IoU
of all individual template (colored dots) as well as the original CLIP averaged-templates performance (dotted line). Note that we consider
templates valid only if they predict more than 0 pixels for that class, and therefore report the number of valid templates in parenthesis next
to the class name.
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