
Variance-Based Pruning for Accelerating and Compressing Trained Networks

Supplementary Material

0 20 40 60 80 100
Epoch

65

70

75

80

Te
st

 A
cc

ur
ac

y 
(%

)

Learning Curves

Legend
Magnitude
SNIP
VBP

DeiT-Tiny
DeiT-Small
DeiT-Base

Figure 4. Learning curves over 100 epochs of fine-tuning after
different structured pruning methods. VBP retains a performance
lead over other methods throughout the entire training period.
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Figure 5. Accuracy retention across varying pruning ratios for
different structured pruning methods applied to DeiT-Base. VBP
consistently retains more accuracy across all pruning levels.

A. Additional Analysis

A.1. Longer Training and Learning Curves

To validate the sustained performance of VBP through-
out training, we extend training to 100 epochs and com-
pare learning curves against other pruning methods adapted
for structured pruning. While the performance gap nar-
rows over time, VBP consistently outperforms alternatives
throughout all 100 epochs, as shown in Fig. 4.
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Figure 6. Layer-wise pruning distributions for different structured
pruning methods. VBP prunes more in early layers, contrasting
with SNIP which increases pruning in deeper layers.

A.2. Comparison at Different Pruning Ratios
We further examine the stability of VBP compared to other
pruning methods adapted for structured pruning. We apply
varying pruning rates to the DeiT-Base model and plot the
accuracy retention. As shown in Fig. 5, VBP maintains a
consistent advantage across all pruning levels, indicating its
relative robustness to aggressive pruning.

A.3. Pruning Distribution Across Layers
We analyze how pruning decisions are distributed across
layers. Interestingly, gradient-based methods such as SNIP
tend to prune neurons in a pattern opposite to that of VBP,
which focuses more on early layers. This difference is visu-
alized in Fig. 6, suggesting that VBPs strategy may lead to
better feature preservation and downstream performance.



B. Performance on ImageNet-1k for Different Pruning Rates

Model MACs (G) Parameters (M) Top-1 Acc. (%)

(Pruning Rate) Retention Final

DeiT-Base 17.58 86.57 - 81.73
5% 17.02 (-3.19%) 83.73 (-3.28%) 81.63 (99.91%) 81.79 (100.11%)
10% 16.46 (-6.37%) 80.90 (-6.55%) 81.54 (99.80%) 81.72 (100.02%)
15% 15.91 (-9.50%) 78.07 (-9.82%) 81.41 (99.65%) 81.73 (100.04%)
20% 15.35 (-12.68%) 75.24 (-13.09%) 80.87 (98.98%) 81.76 (100.07%)
25% 14.79 (-15.87%) 72.40 (-16.37%) 79.66 (97.50%) 81.76 (100.07%)
30% 14.23 (-19.06%) 69.57 (-19.64%) 78.97 (96.66%) 81.68 (99.98%)
35% 13.67 (-22.24%) 66.74 (-22.91%) 77.67 (95.07%) 81.71 (100.01%)
40% 13.12 (-25.37%) 63.90 (-26.19%) 75.78 (92.75%) 81.55 (99.82%)
45% 12.56 (-28.56%) 61.07 (-29.46%) 72.14 (88.30%) 81.32 (99.53%)
50% 12.00 (-31.74%) 58.24 (-32.72%) 66.40 (81.27%) 80.99 (99.13%)

DeiT-Small 4.61 22.05 - 79.70
5% 4.47 (-3.04%) 21.34 (-3.22%) 78.63 (98.66%) 79.67 (99.96%)
10% 4.33 (-6.07%) 20.63 (-6.44%) 78.32 (98.27%) 79.63 (99.91%)
15% 4.19 (-9.11%) 19.92 (-9.66%) 77.65 (97.43%) 79.65 (99.94%)
20% 4.05 (-12.15%) 19.22 (-12.83%) 76.90 (96.49%) 79.65 (99.94%)
25% 3.91 (-15.18%) 18.51 (-16.05%) 76.13 (95.52%) 79.63 (99.91%)
30% 3.77 (-18.22%) 17.80 (-19.27%) 74.98 (94.08%) 79.52 (99.77%)
35% 3.63 (-21.26%) 17.09 (-22.49%) 73.49 (92.21%) 79.30 (99.50%)
40% 3.49 (-24.30%) 16.38 (-25.71%) 71.44 (89.64%) 79.18 (99.35%)
45% 3.35 (-27.33%) 15.67 (-28.93%) 68.42 (85.85%) 78.90 (99.00%)
50% 3.21 (-30.37%) 14.96 (-32.15%) 64.44 (80.85%) 78.62 (98.64%)

DeiT-Tiny 1.26 5.72 - 72.02
5% 1.22 (-3.17%) 5.54 (-3.15%) 71.67 (99.54%) 72.05 (100.07%)
10% 1.19 (-5.56%) 5.36 (-6.29%) 70.95 (98.54%) 71.92 (99.89%)
15% 1.15 (-8.73%) 5.18 (-9.44%) 70.05 (97.29%) 71.76 (99.67%)
20% 1.12 (-11.11%) 5.01 (-12.41%) 68.87 (95.65%) 71.60 (99.44%)
25% 1.08 (-14.29%) 4.83 (-15.56%) 67.37 (93.57%) 71.44 (99.22%)
30% 1.05 (-16.67%) 4.65 (-18.71%) 64.76 (89.94%) 71.20 (98.89%)
35% 1.01 (-19.84%) 4.48 (-21.68%) 61.12 (84.89%) 70.86 (98.42%)
40% 0.978 (-22.38%) 4.30 (-24.83%) 55.64 (77.28%) 70.55 (97.99%)
45% 0.943 (-25.16%) 4.12 (-27.97%) 49.77 (69.13%) 70.08 (97.33%)
50% 0.908 (-27.94%) 3.94 (-31.12%) 39.58 (54.97%) 69.70 (96.81%)

Table 10. Comparison evaluating four metrics on ImageNet-1k [6]: MACs: computational operations, measured in billions of operations;
and Parameters: the total model size in millions of parameters; Accuracy Retention (Ret.): retained accuracy after pruning, before fine-
tuning; and Final Accuracy: accuracy after fine-tuning. Our method achieves competitive accuracy with significant reductions in MACs
and parameters and allows off-the-shelf deployment for pruning rates up to 20%.



C. Performance on CIFAR-100 for Different Pruning Rates

Model MACs (G) Params (M) Top-1 Acc. (%)

(Pruning Rate) Retention Final

DeiT-Base 17.58 86.57 - 88.23
30% 14.23 (-19.06%) 69.57 (-19.64%) 84.83 (96.15%) 88.07 (99.82%)
40% 13.12 (-25.37%) 63.90 (-26.19%) 82.21 (93.18%) 87.53 (99.21%)
50% 12.00 (-31.74%) 58.24 (-32.72%) 77.45 (87.78%) 87.00 (98.61%)
60% 10.88 (-38.11%) 52.57 (-39.27%) 54.60 (61.88%) 85.98 (97.45%)
70% 10.33 (-41.24%) 49.74 (-42.54%) 32.58 (36.93%) 84.84 (96.16%)

DeiT-Small 4.61 22.05 - 85.43
30% 3.77 (-18.22%) 17.80 (-19.27%) 71.88 (84.14%) 85.28 (99.82%)
40% 3.49 (-24.30%) 16.38 (-25.71%) 68.41 (80.08%) 85.48 (100.06%)
50% 3.21 (-30.37%) 14.96 (-32.15%) 60.99 (71.39%) 84.94 (99.43%)
60% 2.93 (-36.44%) 13.55 (-38.55%) 51.17 (59.90%) 83.65 (97.92%)
70% 2.65 (-42.52%) 12.13 (-44.99%) 33.19 (38.85%) 82.08 (96.08%)

DeiT-Tiny 1.26 5.72 - 80.50
30% 1.05 (-16.67%) 4.65 (-18.71%) 70.94 (88.12%) 80.15 (99.57%)
40% 0.98 (-22.22%) 4.30 (-24.83%) 62.10 (77.14%) 79.97 (99.34%)
50% 0.91 (-27.78%) 3.94 (-31.12%) 46.01 (57.16%) 78.52 (97.54%)
60% 0.84 (-33.33%) 3.59 (-37.24%) 24.68 (30.66%) 77.20 (95.90%)
70% 0.77 (-38.89%) 3.23 (-43.53%) 9.33 (11.59%) 74.11 (92.06%)

Table 11. Comparison evaluating four metrics on CIFAR-100 [11]: MACs: computational operations, measured in billions of operations;
Parameters: the total model size in millions of parameters; Accuracy Retention (Ret.): retained accuracy after pruning, before fine-
tuning; and Final Accuracy: accuracy after fine-tuning.



D. Runtime Performance for Reported Models

Model H200 (GPU) T4 (GPU) E5 (CPU)

(Pruning Rate) Time (ms) Speed Time (ms) Speed Time (ms) Speed

Full VBP Up Full VBP Up Full VBP Up

DeiT-T (45%) 3.64ms 3.10ms 1.17× 33.17ms 28.36ms 1.17× 0.53s 0.43s 1.25×
DeiT-S (50%) 9.81ms 7.34ms 1.34× 107.42ms 81.05ms 1.33× 1.72s 1.20s 1.43×
DeiT-B (55%) 30.73ms 21.36ms 1.44× 378.63ms 273.94ms 1.38× 5.71s 3.81s 1.50×
DeiT-B (20%) 30.73ms 27.72ms 1.11× 378.63ms 342.34ms 1.11× 5.71s 5.12s 1.11×
Swin-T (45%) 14.00ms 11.66ms 1.20× 131.78ms 111.00ms 1.19× 2.70s 2.28s 1.18×
Swin-S (50%) 24.82ms 19.60ms 1.27× 241.27ms 186.39ms 1.29× 4.91s 3.76s 1.30×
Swin-B (55%) 36.71ms 28.14ms 1.30× 376.82ms 288.13ms 1.31× 7.52s 5.75s 1.31×
Swin-B (20%) 36.71ms 33.37ms 1.10× 376.82ms 341.97ms 1.10× 7.52s 6.85s 1.10×
ConvNeXt-T (45%) 12.07ms 9.43ms 1.28× 133.20ms 106.44ms 1.25× 1.93s 1.48s 1.30×
ConvNeXt-S (50%) 21.62ms 15.20ms 1.42× 248.75ms 172.96ms 1.44× 3.37s 2.16s 1.55×
ConvNeXt-B (55%) 32.39ms 21.75ms 1.49× 384.87ms 249.95ms 1.54× 5.64s 3.30s 1.71×
ConvNeXt-B (20%) 32.39ms 28.49ms 1.14× 384.87ms 340.90ms 1.13× 5.64s 4.91s 1.15×

Table 12. Comparison of runtime performance across different hardware: H200 (GPU): high-end NVIDIA Tensor Core GPUs; T4 (GPU):
cost-efficient NVIDIA Tesla GPUs for inference; and E5 (CPU): Intel Xeon E5-2680v4 processors. We report Full and VBP runtimes
in milliseconds, along with the resulting Speed-up factors. Our method consistently improves inference latency across diverse hardware
environments, reaching up to 1.71× speed-ups.



E. Activation Distributions Across Layers
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Figure 7. Visualization of activation distributions before and after
the non-linearity in pruned neurons throughout different layers.
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Figure 8. Visualization of activation distributions before and after
the non-linearity in retained neurons throughout different layers.


