
LDIP: Long Distance Information Propagation for Video Super-Resolution

Supplementary Material

Figure 6. Visual example illustrating our methods capability to

optionally inject information from available reference images. In

the input video the camera pans from left to right. Even without

reference images our method manages to reconstruct more fine de-

tails than IART. Injecting additional high-quality reference images

allows our method to further increase visual quality.

MRefSR Ours w/o ref w/o ICA

PSNR ↑ 30.98 32.55 32.03 32.54

LPIPS ↓ 0.172 0.102 0.111 0.107

Table 5. Evaluation on frames 20 to 80 of the REDS evaluation

dataset. Frames 0 and 99 are available in high-resolution as refer-

ence images. We include ablation of the Implicit Cross Attention.

Our results were generated using the BasicVSR++ backbone.

6. Additional Results

In Figure 6 we showcase our methods ability to optionally

use high quality reference images if they are available. The

first two columns show the results produced by IART and

our method only using the input video without any refer-

ence images. With its improved long range temporal propa-

gation our method already produces slightly higher quality

results. Using a small number (5) of high quality reference

images depicting the same scene, our method is able to in-

ject information throughout the sequence which results in

significantly higher quality outputs.

In Table 5 we further illustrate the effectiveness of using

high quality reference images numerically. Here, we up-

scale frames 20 to 80 from each sequence in the REDS test

dataset while providing frames 0 and 99 as HR references.

We add MRefSR [30] as a comparison in this scenario as, to

the best of our knowledge, it is the only existing method ap-

plicable to this scenario. The results clearly show that using

high quality reference images significantly improves qual-

ity. We also take this opportunity to ablate the effectiveness

of our ICA module. In the last column (w/o ICA) we test

our method where the ICA module is replaced by standard

cross attention. We see that ICA improves improves both

PSNR and LPIPS scores.

7. Architecture Details

In this section we give a detailed description of our methods

architecture.

7.1. Reference Feature Extractor

Our Ref-Align module makes use of a feature extraction

network to extract a feature map from a given reference im-

age. We implement this network as a single convolution

going from 3 to 64 channels followed by two residual dense

blocks each using 64 intermediate channels, a growth rate

of 16 and a depth of 4. The extracted feature map is then

aligned to the anchor feature map by warping it according

to W . Warping is performed similarly as in the arbitrary

scaling module. That is, the feature map is warped using

nearest neighbor sampling and the sampling offsets are ap-

pended along the channel dimension.

7.2. Multi Reference Fusion (Ref­Fusion) Module

The Ref-Fusion module takes a query feature map FQ and

an arbitrary number of KV feature maps FKV
1

, · · ·FKV
N as

input and returns a refined version of the query feature map

FQ. Here, FQ ∈ R
Cq×H×W corresponds to the HR fea-

ture map that is being refined and FKV
i ∈ R

Ckv×H×W cor-

responds to the aligned reference feature map produced by

the RA module from the reference image I
ref
i . The Ref-

Fusion module is parametrized by the Cq , Ckv , the number

of attention heads (Hn) and their size Hs, and depth D. In

our method we set Cq = 64, Ckv = 64 + 2 + 1, Hn = 4,

and Hs = 16. The Ref-Fusion module operates as follows.

F ′Q ← FQ

FQ ← Conv2dqin(F
Q)

for i ∈ [1, N ] do

FKV
i ← Conv2dkin(F

KV
i )

end for

for i ∈ [1, D] do

F̂Q ← ICAi(F
Q, FKV

1
, · · · , FKV

N )

FQ ← fusioni(cat(FQ, F̂Q))
end for

FQ ← F ′Q + Conv2dr(F
Q)

Here, Conv2dqin / Conv2dkin are convolutions going

from Cq / Ckv to E = Hn · Hs channels. Conv2dr is a

convolution going from Cq to Cq channels and is initialized

with zeros. Each fusioni is a chain of 3 convolutions going



from 2E to 4E to E channels with LeakyReLU activation

between the layers. Finally, each Implicit Cross Attention

(ICAi) layer uses Hn attention heads each with size Hs.

Implicit Cross Attention (ICA). The ICA operates as

follows. Note that everything in the ICA operates in a pixel-

wise manner.

FQ ← layer norm(FQ)
for i ∈ [1, N ] do

FKV
i ← MLP(cat(FQ, FKV

i ))
FKV
i ← layer norm(FKV

i )
end for

FQ ← mha(FQ, FKV
1

, · · · , FKV
N )

Here, the MLP has 1 hidden layer of size 4E and uses

LeakyReLU activation. By mha we refer to standard multi-

head attention using Hn attention heads each with size Hs.

Again note that the mha operates for each spatial location

independently.

7.3. High­Resolution Iterative Propagation (HRIP)

We design our HRIP module similarly to the LRIP mod-

ules used by IART and BasicVSR++. To reduce compu-

tational complexity we only perform one forward and one

backward pass (instead of two each) and we use first-order

instead of second-order propagation. Feature maps from the

previous frame are aligned to the current feature map using

nearest neighbor sampling and appending the sampling off-

set to the warped feature map. The current feature map and

the warped previous feature map are concatenated along the

channel dimension and then passed to a SwinTransformer

network to compute a residual to the current feature map.

7.4. Arbitrary Scaling

We implement the neural network N in our arbitrary scal-

ing layer using two sequential residual dense blocks. Both

RDBs operate on 64 channels with a growth rate of 16 and

a depth of 4.

7.5. Number of Parameters

In total our LRRF module adds an additional 2.1 million

trainable parameters on top of the VSR backbone. For com-

parison, IART consists of 13 million parameters.

8. Training Details

In this section we present further details regarding our meth-

ods training procedure.

8.1. Fixed ×4 VSR

When training our method for fixed ×4 scaling we start

from an existing VSR method (the VSR backbone) and train

our LRRF module on top of it. During training all parame-

ters of the VSR backbone are kept frozen and only param-

eters in the LRRF module are trained. The parameters of

the optical flow method required by the HRIP and the cor-

respondence estimation module required by the RA module

are also kept frozen during training. The remaining param-

eters in the LRRF module are trainable.

Training Data. To train our method we generate training

examples consisting of a LR video clip, a number of refer-

ence images, and a corresponding HR video clip. We start

by randomly selecting a HR video clip of length 24 from our

training dataset and refer to this clip as Cref . From Cref

we randomly select a subclip of length 12 and refer to this

as Cgt. We then apply bicubic downscaling by ×4 to Cgt

to generate Clr. To generate reference images we first se-

lect between 1 and 3 frames in Clr randomly and designate

them as key-frames. For each key-frame we then generate

between 1 and 5 reference images. Each reference image

is generated by selecting a random frame in Cref and two

random scaling factor s1 ∈ [1, 4], s2 ∈ [1, s1]. The selected

frame is then first downscaled by s1 and then upscaled by

s2 to generate the reference image.

Training Parameters. For this task we train our method

on the REDS dataset using ground truth crops of size

256 × 256. We use the AdamW optimizer and we use co-

sine annealing to decay the learning rate from 2 · 10−4 to

10−6. During training we use the L1 loss to get a training

signal. When using BasicVSR++ as a backbone we perform

100k training step using a batch size of 2. Training for this

version is performed on 2 RTX4090 GPUs and took 1 day

and 18 hours. When using the IART backbone we perform

150k training steps using a batch size of 4. Training for this

version is performed on 4 RTX4090 GPUs and took 3 days

and 15 hours. For comparison, IART was trained on 8 V100

GPUs for 4 weeks.

8.2. Arbitrary Scaling VSR

Training our method for arbitrary scaling VSR is performed

in two steps.

Initial AS-VSR training. Starting from the backbone

VSR method we first replace the upscaling layer and im-

age decoder. These new modules are then trained on REDS

using clips of length 12. During training we keep the size of

the LR video fixed to 64× 64 and adjust the GT video size

according to the chosen scaling factor. The scaling factor is

chosen randomly between 1.5 and 4.5. We use the AdamW

optimizer and we use cosine annealing to decay the learning

rate from 2 · 10−4 to 10−6. During training we use the L1

loss to get a training signal. Independent of the backbone

VSR method used we perform 100k training steps. When



Resolution 2 References 4 References 8 References

640×360 0.2s / 1.0GB 0.3s / 1.6GB 0.6s / 2.8GB

1280×720 0.7s / 3.6GB 1.1s / 5.8GB 1.9s / 10.7GB

1920×1080 1.5s / 8.0GB 2.4s / 12.9GB 4.2s / 23.8GB

2560×1440 2.6s / 14.1GB 4.3s / 22.8GB 7.5s / 42.2GB

Table 6. LRRF module Runtime and peak GPU memory consump-

tion with respect to image resolutions and number of references

(on an RTX A6000).

using BasicVSR++ as a backbone we use a batch size of 2

and the model is trained on 2 RTX4090 GPUs for 14 hours.

When using IART as a backbone we use a batch size of 4

and the model is trained on 4 RTX4090 GPUs for 22 hours.

LRRF training. Starting from the trained arbitrary scal-

ing version of BasicVSR++ and IART we train our LRRF

module on top. Training is performed identically to the

fixed ×4 VSR case but with varying scaling factors. As

for the initial AS-VSR training we choose random scaling

factors between 1.5 and 4.5. Here, however, we keep the

ground truth crop size fixed to 256× 256 and vary the low-

resolution size according to the scaling factor. Independent

of the backbone used we train our method for 100k steps

using a batch size of 2 on 2 RTX4090 GPUs. Training us-

ing the BasicVSR++ backbone takes 1 day and 20 hours,

while training with IART as a backbone takes 3 days and

10 hours.

LRRF Computational Cost In Table 6 we present an

evaluation of our proposed LRRF modules computational

cost across different resolutions and number of reference

images.


	Additional Results
	Architecture Details
	Reference Feature Extractor
	Multi Reference Fusion (Ref-Fusion) Module
	High-Resolution Iterative Propagation (HRIP)
	Arbitrary Scaling
	Number of Parameters

	Training Details
	Fixed 4 VSR
	Arbitrary Scaling VSR


