
AstroLoc: Robust Space to Ground Image Localizer

Supplementary Material

1. Supplementary

In this Supplementary we provide additional information on
the Lost-in-Space satellite problem (Sec. 1.1), the Historical
space imagery localization problem (Fig. 2), and finally we
showcase a large number of qualitative results Sec. 1.3.

1.1. Lost-in-Space satellite problem

Overview The goal of “lost in space” is to identify the lo-
cation/orbit of nanosatellites using computer vision. Exist-
ing solutions either involve bulky and expensive (∼10k$)
GPS receivers, months-long tracking via radio communica-
tions through ground stations [4] (a considerable fraction
of CubeSats remain unidentified more than 250 days after
launch [3]), or use the recent VINSat [3], a computer vi-
sion solution that localizes the satellite only if/when it flies
above a set of predefined landmarks. With our more general
approach to localization, we can instead localize the queries
(collected in real time by the satellite) anywhere on Earth,
without being constrained to a set of predefined locations or
landmarks.

We apply AstroLoc by reformulating the task as image
retrieval, using the dataset from McCleary et al. [3]. This
dataset contains Sentinel-2 mosaics, which are not cloud-
less or seamlessly processed, leading to sharp boundaries
and occasional oblique views (see Fig. 3, row 1 col 2).
Though Sentinel 2 captures images nadir-facing (straight
down), some images in this set (Fig. 3, row 1 col 2) appear
to have been transformed to mimic oblique views. These
conditions increase the challenge of this dataset. All im-
ages cover an area between 35k and 55k sqkm, meaning that
our database can be built with only satellite images of zoom
level 9, reducing the number of images required for world-
wide coverage to just 12k. We therefore construct an image
retrieval task with all 2500 images from [3] as queries, and
12k database images.

Results Tab. 4 (of the main paper) shows AstroLoc’s supe-
rior performance in an out-of-distribution task, outperform-
ing AnyLoc and EarthLoc by ∼50 R@1. These gains high-
light the impact of AstroLoc’s training setup improvements.
Additionally, even the smaller AstroLoc-tiny model outper-
forms AnyLoc with only 2% of the parameters.

Embedded Use To better understand if this model could be
actually used on a nanosatellite, we also provide results with
a tiny version of AstroLoc, based on the smallest version of
DINO-v2 and with output dimension of 512. This version
achieves 36.7% R@1 and 74.5% R@100 with only 27M pa-
rameters (25% of the full AstroLoc), making it lightweight

enough to fit on an embedded system in a nanosatellite. The
memory required to store database features with AstroLoc-
tiny is 12k × 512× 4× 4 = 98 MB: 12k images with 512
dimensional features, each repeated 4 times due to the test
time rotation augmentation and each element taking 4 bytes
due to float32 encoding. Further memory reduction can be
achieved through compression with methods like product
quantization [2] for the features or by quantizing or pruning
the model itself. Given the smaller memory footprint of this
model and database, it is feasible to use AstroLoc to run real
time localization of nanosatellites. Combined with the state
estimation techniques from [3], AstroLoc can power a fast,
accurate, and low cost orbit determination solution.

1.2. Historical space imagery localization
Historical imagery of Earth from space represents a unique
source of data to understand how Earth has changed over
decadal time spans. Similar to photographs taken by astro-
nauts aboard the ISS, lots of historical imagery from space,
taken from the Space Shuttle, lacks localization informa-
tion. Although efforts at manually localizing these photos
have been made, we note that (1) a large number of these
images still lack location information, and (2) these images
are only weakly labeled with a single location of any pixel
within the image, which is often noisy and does not repre-
sent its full extent.

Given these shortcomings, we seek to understand the
performance of APL systems in localizing early pho-
tographs (1981-1984) from the Space Shuttle, which were
originally taken with film cameras and then digitized. As
such, they have different photometric characteristics from
more recent photography, and are known1 to often require
color correction (note the blue hue in many images in
Fig. 2). We first precisely localize 704 images with the
pipeline described in Sec. 3.1, and then compute localiza-
tion results, reported in Tab. 5. We empirically find that
AstroLoc achieves strong results even on these old pho-
tographs, showcasing its robustness to various types of do-
main changes. Comparing against performance on APL
evaluation sets (Table 2 and Table 3 of the main paper), As-
troLoc has the smallest drop in recall (at all N) on the out-
of-distribution historical imagery out of all methods tested.

1.3. Qualitative Results
Fig. 1, 2, 3 show qualitative AstroLoc results on astronaut
photos, historical Earth from space imagery from the Space
Shuttle, and satellite imagery from the McCleary[3] dataset,

1https://eol.jsc.nasa.gov/FAQ/#photoQuality

https://eol.jsc.nasa.gov/FAQ/#photoQuality


Figure 1. Qualitative examples from the Amazon-L test set. Each triplet shows one query and its top-2 predictions, red if wrong and
green if correct.

respectively. There are four examples in each row, with
each example showing the query photo (leftmost) and the
top-2 retrieval results (i.e. most similar, as ranked by As-
troLoc). Correct predictions, defined as those that have any
overlap with the query, are outlined in green, and incorrect
predictions are outlined in red.

Failure Modes The most common failure modes are (1) in
heavily forested areas (Fig. 1), which share similar visual
characteristics to other areas in the same (as well as nearby)
forests; (2) in coastal regions where very little land is in the
image, causing many mostly water database images to be
retrieved (Fig. 3, bottom right); and (3) the presence of oc-
clusion, typically in the form of clouds (Fig. 3, many exam-
ples). Training specifically to ignore cloud regions may im-
prove performance in the case of occlusions. Database cura-
tion, removing images with minimal landmass, can help al-
leviate the mostly water retrieval results. Further hard nega-
tive mining may help disambiguate similar forested regions,
though we note that in practice these similar (but not the
same) predictions are typically filtered by a local feature-
based verification method like EarthMatch [1].Overcoming
these failure modes will be explored in future work.
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[2] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product

quantization for nearest neighbor search. IEEE Trans. Pattern
Anal. Mach. Intell., 33(1):117–128, 2011. 1

[3] Kyle McCleary, Swaminathan Gurumurthy, Paulo RM Fisch,
Saral Tayal, Zachary Manchester, and Brandon Lucia. Vinsat:
Solving the lost-in-space problem with visual-inertial naviga-
tion. In IEEE International Conference on Robotics and Au-
tomation (ICRA), 2024. 1, 3

[4] Mark A. Skinner, Michael Coletti, Matthew C. Voss, Tomas
Svitek, John C. Lee, Kerstyn Auman, Hemanshu Patel, and
Eamonn J. Moyer. Mitigating cubesat confusion: Results of
in-flight technical demonstrations of candidate tracking and
identification technologies. Journal of Space Safety Engineer-
ing, 9(3):403–409, 2022. 1



Figure 2. Qualitative examples from the historical Space Shuttle imagery. Each triplet shows one query and its top-2 predictions, red
if wrong and green if correct. The queries were taken with analog cameras between 1981 and 1984 and then later digitized.

Figure 3. Qualitative examples from the VINSat dataset [3]. Each triplet shows one query and its top-2 predictions, red if wrong and
green if correct. Queries are mosaics of Sentinel 2 imagery.
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