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S1. The Dearth of Material Image Data

While material recognition as a line of research has existed

for over 60 years, there exist only a few dozen widely avail-

able datasets. This is compared to thousands of datasets tar-

geted at object recognition, segmentation, etc., which can

be more easily aggregated from online images and anno-

tated by the layperson without any additional information.

These two factors make the task of creating material image

datasets very challenging. Nevertheless, there exists a need

in the space of material recognition for not only more, but

much larger datasets.

Beyond material recognition, there is rich literature on

adjacent tasks that are highly correlated with recognizing

materials. Several prior works introduce datasets for tex-

ture recognition [4], material segmentation [1, 2, 12], tex-

ture segmentation [16], and estimation of the bidirectional

texture function (BTF) or bidirectional reflectance function

(BRDF) [5, 15, 18]. Even so, such datasets are often lim-

ited in their range of material categories. For example,

while BRDF/BTF datasets may contain tens of thousands

of images spread across a reasonable range of classes (usu-

ally between 10 to 40), typically, each class only has a

few unique physical instances per class. Compare this to

ImageNet [6] for object recognition, which contains 1,000

classes with equally many instances per class. As a result,

material recognition datasets have limited specificity with

such few classes, and given the limited intraclass diversity,

learned models may not generalize well to real-world tasks.

We contribute Matador, introduced in Sec. 4 and further de-

tailed in Sec. S2, as a step towards overcoming this hurdle.

S2. Matador Dataset Details

A subset of the most recent material recognition datasets

used as benchmarks in this work is presented in Tab. S1. We

compare our Matador dataset and the subset Matador-C1

(see Sec. S2.5) to these datasets. We find Matador contains

higher interclass and intraclass diversity compared to exist-

ing datasets, and additionally incorporates new datatypes.

The dataset is available on the Matador webpage, and rep-

resentative samples are shown in Fig. S1.

S2.1. Acquisition Details

Here we provide further details about how the Matador

dataset was constructed. As discussed in Sec. 4, we col-

lected in-the-wild material images to populate the taxon-

omy with image data. We used an Apple iPhone 15 Pro

Max to do this, of which we utilized three of its sensors: the

wide-angle camera, lidar (which is registered with the wide-

Figure S1. Matador Local Appearance Examples. Several ex-

amples of the local appearance images in the Matador dataset.

These images are captured at a close distance (typically around

20-30 cm away), and “local appearance” denotes that the target

material fills the majority of the frame. More examples can be ex-

amined using the interactive viewer on the Matador webpage.

angle camera), and ultrawide-angle camera. We first take

a close-up image of the material’s local appearance using

the wide-angle camera. Simultaneously, a lidar scan of the

material’s local surface structure is captured. We then take

a step back to capture the material in the context of its sur-

roundings using the ultrawide-angle camera. Between these

two captures, we record the motion of the phone using the

inertial measurement unit (IMU). The complete sample of a

material thus contains the following raw data:

1. Local Appearance Image. The image is 12 MP

(3024ˆ4032 px2) with a 74° FOV from the wide-angle

camera. Since the 48 MP wide-angle camera used to

capture local appearance has a Quad-Bayer color filter

array (for high dynamic range imaging in a single shot),

the resolution after capture is reduced to 12 MP. The im-

age is recorded as a 12-bit Bayer raw DNG.

2. Depth Map of the Surface Structure. The image is a

100 points/degree2 lidar depth map registered with the

local appearance image. It has an equivalent FOV to the

https://cave.cs.columbia.edu/repository/Matador
https://cave.cs.columbia.edu/repository/Matador


Table S1. Statistics on Datasets Used in This Work. We compare the size and diversity of each benchmark dataset with the Matador

dataset, which contains a high number of material classes and instances per class (interclass and intraclass diversity). We refer the interested

reader to Liu et al. [13] for metrics on older and adjacent datasets. Note that “Matador (raw)” denotes the unprocessed version of the dataset,

with images that are neither undistorted, demosaiced, nor cropped to a relevant region of interest.

Dataset Authors Year Classes Images Resolution [px2] Avg. Instances per Class Image Datatypes

KTH-TIPS-2b Caputo et al. [3] 2005 11 4,752 200ˆ200 4 Appearance

FMD Sharan et al. [17] 2013 10 1,000 512ˆ384 100 Appearance

GTOS Xue et al. [19] 2017 40 34,243 240ˆ240 „15 Appearance, Angular

GTOS-Mobile Xue et al. [20] 2018 31 6,066 455ˆ256 „5 Appearance

Matador Ours 2025 57 7,238 512ˆ512 „126 Appearance, Depth, Context

Matador-C1 Ours 2025 37 6,614 512ˆ512 „179 Appearance, Depth, Context

Matador (raw) Ours 2025 57 7,238 3024ˆ4032 „126 Appearance, Depth, Context

local appearance image, but when projected into two di-

mensions, the depth map is roughly a fifth of the reso-

lution. Thus, it must be resampled to approximate per-

pixel depth in the local appearance. The depth map is

recorded as a 32-bit float binary file.

3. Global Context Image. The image is 12 MP

(3024ˆ4032 px2) with a 104° FOV from the ultrawide-

angle camera. It is recorded as a 12-bit Bayer raw DNG.

4. Motion. The IMU data contains accelerometer measure-

ments in the time between the local appearance image

capture and the global context image capture. Measure-

ments are sampled at 100 Hz – the maximum for the

iPhone 15 Pro Max. The motion is recorded in a times-

tamped text file.

5. Metadata. The metadata records camera intrinsics and

extrinsics (from the wide-angle to ultrawide-angle cam-

era) for each capture, as reported by the manufacturer. In

addition, typical EXIF data is also recorded that includes

the camera settings for each capture (e.g., ISO, exposure

time, and suggested white balance gains).

We record Bayer raw images to eliminate compression

artifacts that could alter a material’s appearance. The

above datatypes represent the raw dataset. We de-

veloped an iOS application to complete this capture

process; it can also be found on the Matador web-

page. Note that in Swift, the wide-angle camera and li-

dar correspond to the builtInLiDARDepthCamera,

and the ultrawide-angle camera corresponds to the

builtInUltraWideCamera.

S2.2. Processing Raw Data into Matador

To process the raw data into the Matador dataset, we first

demosaic and undistort all images. Resampling is applied

to the depth map to match the resolution of the local ap-

pearance image. We then define an approximately 5ˆ5 cm2

region of interest (using depth for scale) in the local appear-

ance containing the material being captured and excluding

extraneous information. The final appearance image is an

sRGB 16-bit unsigned integer TIFF at 512ˆ512 px2, and

the corresponding depth map is a 512ˆ512 px2 32-bit float

TIFF. When resizing images, a Mitchell-Netravali filter is

used for enlarging and a Lanczos filter is used for shrink-

ing.1 The context image remains 3024ˆ4032 px2 but is

now an sRGB 16-bit unsigned integer TIFF. Motion data

and metadata are YAMLs. We additionally correct for vi-

gnetting using manufacturer-provided gains (see the Adobe

DNG specification), which is only noticeable in the full-

resolution context images.

S2.3. Formal Treatment of Novel View Rendering

We now formalize the rendering process described in Sec. 4

used to generate novel views from Matador, which are then

utilized during model training. While this rendering process

is standard, its application to material recognition is novel,

and we detail the effects of each augmentation parameter

below for completeness.

Novel view generation is motivated by the fact that the

visual appearance of materials can vary wildly depending

on the scale they take on in an image. By generating

novel views, a model trained on both the real and rendered

datasets may improve in generalization to real-world set-

tings. This is supported by the out-of-distribution (OOD)

results in Fig. 5a. A qualitative look at this can be seen

in Fig. 6, where materials are recognized at distances well

beyond those captured in the local appearance images of

Matador that are used for training.

Since the 3D structure and position of the material are

known, we can alter camera pose and imaging characteris-

tics to simulate images produced by different cameras and

viewpoints. We assert the true image irradiance E is well-

sampled by the local appearance image. With the local ap-

pearance and structure, we create a mesh of the material

surface where each face represents the scene radiance L –

assuming Lambertian reflectance. Spatial transformations

H (magnification and orientation) can then be applied to

the mesh to change the pose of the imaged material rela-

tive to the observing camera. The novel view irradiance E1

is proportional to the scene radiance L, and we retrieve E1

through raytracing [11] accounting for occlusions, perspec-

1The merits of various resampling filters are discussed at length in the

ImageMagick [10] usage guide: https://usage.imagemagick.org/filter/.

https://cave.cs.columbia.edu/repository/Matador
https://cave.cs.columbia.edu/repository/Matador
https://helpx.adobe.com/content/dam/help/en/photoshop/pdf/DNG_Spec_1_7_1_0.pdf#page=110.42
https://helpx.adobe.com/content/dam/help/en/photoshop/pdf/DNG_Spec_1_7_1_0.pdf#page=110.42
https://usage.imagemagick.org/filter/


tive effects, lens aberrations (e.g., defocus), and attenuation

(from the aperture, visibility, etc.). The irradiance of a novel

view is then:

E1

bpxq “
1

AreapPq

ż

pPP

L pp ` tpFpxq ´ pqq dp, (S1)

where t is the length of the ray, and,

Fpxq “ c `
df

||x ´ c||
px ´ cq, (S2)

maps a sensor coordinate x to a point on the focal plane rela-

tive to the piercing point c. The integral is over each point p

on the effective pupil P with full transmission, equivalent to

the aperture under a thin-lens model. Spatially-varying blur

is then introduced to the novel view by varying the focus

distance df and size of the pupil P.

The irradiance in Eq. (S1) is continuous and must be

sampled to create an image. We first convolve with a box

filter p to average over the active area of each pixel:

E1

apxq “ E1

bpxq ˚ ppxq. (S3)

The density of rays being traced is then equivalent to sam-

pling with a pulse train with period ∆:

E1

spxq “ E1

apxq ¨
ÿ

kPZ2

δpx ´ ∆kq. (S4)

We additionally model photon and sensor noise with a zero-

mean random variable n [8]:

E1

npxq “ E1

spxq ` npxq. (S5)

Finally, the result is discretized by the pixel pitch T to pro-

duce an image:

E1rus “ E1

npuTq. (S6)

The resulting views are cropped to fill the entire frame and

resized to a standard 512ˆ512 px2 size. As in Sec. S2.2,

when resizing images, a Mitchell-Netravali filter is used for

enlarging and a Lanczos filter is used for shrinking.

By altering the pose of the material (with H), the defo-

cus of the lens (with df and P), the pixel size p, the sensor

noise n, and the pitch T , we can simulate how an arbitrary

camera would render the material from any distance and

orientation. This process is applied to all raw samples in

the Matador dataset to obtain a larger and more diverse set

of training images. Numerous novel views are rendered per

raw sample, faithfully depicting how a given material will

look under a wide range of imaging conditions.

S2.4. Generalization Test Set Details

Novel views supplement the captured local appearance im-

ages used for model training. In addition to local ap-

pearance images used for testing, we additionally create
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Figure S2. Evaluating Generalization. Examples of the appear-

ance image (top) and patch cropped from the context image (bot-

tom) for Matador samples. The latter is used to create an out-of-

distribution test set to evaluate real-world model performance (see

Sec. S2.4). Compared to the original ROIs used for model train-

ing, the context ROIs come from a different camera, a more distant

viewpoint, and capture a different area of the material sample. As

a result, they generally exhibit reduced detail, have a slight blur,

and appear flatter. Zoom in to best see the fine texture differences

between the images.

a second evaluation set, which we refer to as the out-of-

distribution (OOD) test set. As discussed in Sec. 4, the

OOD test set is intended to evaluate the effect of generated

novel views on model generalization to real-world imag-

ing conditions (such as further viewpoints, harsh blur, and

viewing directions that are not frontoparallel). Here we fur-

ther detail how this test set was created.

In each raw local appearance image, a square region of

interest (ROI) is used to define a relevant patch for model

training and testing. This is done to remove any context that

might be present in the full-resolution raw local appearance

image, and it is typically 5ˆ5 cm2. Using this same ROI

and the registered depth map, we map the four corners of

the ROI into three dimensions through unprojection. We

then apply a Kalman filter to the accelerometer measure-

ments between the appearance and context captures, and use

the resulting spatial transformation to transform the 3D ROI

corners into the wide-angle camera’s frame of reference at

the time of the context image capture. Using manufacturer-

provided camera extrinsics, we then transform the 3D ROI

corners into the coordinate frame of the ultrawide-angle

camera and project them (incorporating differences in cam-

era intrinsics) to get an ROI of similar scale in the context

image. This ROI is extracted and resized to 512ˆ512 px2.

Due to noise in the accelerometer measurements, this is

not an exact mapping between the appearance and context

ROIs. Instead, the context ROI samples a different loca-

tion on the target material instance. We manually verify this

and that the resulting patches capture the correct material.

Since they capture a different location on the material using

a more distant viewpoint, different lens, and different image

sensor, these patches comprise the OOD test set that simu-

lates realistic real-world capture conditions (see Fig. S2).
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Figure S3. Class Accuracy by Taxonomy Level. Top-1 accuracy of our model on Matador-C1 (Color), per class for each level in our

taxonomy. Plots (a-d) are arranged in order of increasing specificity, referring to the levels shown in Fig. 1c. Values are rounded to the

nearest integer percentage using the largest remainder method. By framing material recognition as a hierarchical learning problem, we are

able to accurately recognize materials at multiple levels of granularity. Note that since all metals are consolidated into a single class in

Matador-C1, the classes “Any metal” in (c) and “Generic metal” in (d) are equivalent to “Metal” in (b). Nevertheless, we provide additional

evaluations at the “Form” and “Material” levels for completeness.

S2.5. Consolidating Matador into Matador-C1

For the performance metrics in Fig. 5a, we consolidated the

Matador dataset from all 57 categories present in the tax-

onomy into a smaller set with 37 categories – we refer to

the consolidated dataset as Matador-C1. In the process,

several categories were omitted (thermoplastic, thermoset,

elastomer, paint, and glass) that we deemed to have insuf-

ficient texture to recognize solely from their local appear-

ance. For instance, glass is featureless and its appearance

is dominated by reflections, and paint, being thin, essen-

tially takes on the surface structure of the material it sits

on. For similar reasons, we combined other categories into

a single one: {aluminum, steel, brass, iron, bronze, copper}
are referred to as “generic metal”, {stoneware, terracotta,

porcelain} as “pottery”, {dirt, soil} as “soil”, {shrub, fo-

liage} as “foliage”, {sandstone, shale} as “shale”, {marble,

quartz} as “marble”, {polyester, silk} as “satin”, {cotton,

linen} as “natural fiber”, {cardboard, paper} as “paper”,

and {cement, concrete} as “concrete”. The visual features

of such materials are highly dependent on surface finish and

patina, and thus recognition requires knowing context.

For many of the materials omitted or combined in

Matador-C1, it would be more reasonable to correctly rec-

ognize them with the inclusion of global context and even

depth images. As the focus of this paper is recognition from

local appearance, we did not explore this avenue. However,

these data types remain available in the complete Matador

dataset for future work to leverage.



Table S2. Additional Performance Metrics on Matador-C1.

Comparison with existing methods. The best overall results are

highlighted in bold, and the second best are underlined. Extending

Fig. 5a, we add evaluations on grayscale images as well as when

only finetuning the classifier head of competing material recogni-

tion models. All models use a ResNet50 backbone.

Top-1 Accuracy Ò

Method Grayscale Color Out-of-Distribution

Material Recognition Models (Finetuned Classifier Head)

DeepTEN [21] 67.1 54.0 52.5

DEPNet [20] 69.6 76.8 64.3

FRP [7] 74.2 68.9 58.4

MSLac [14] 74.0 79.1 65.7

Material Recognition Models (Finetuned End-to-End)

DeepTEN [21] 80.3 88.8 61.5

DEPNet [20] 84.2 87.6 76.1

FRP [7] 84.6 89.4 71.0

MSLac [14] 84.7 88.5 75.4

Hierarchical Material Recognition Models

Ours 87.5 94.1 82.9

S3. Model Training and Evaluation Details

We now discuss the implementation details of model con-

struction, training, and evaluation. We use a ResNet50 [9]

as the image encoder and configure the hierarchical graph

attention network defined in Sec. 5 with the following setup:

Input dim: 1024 Layers: 2

Hidden dim: 512 Attention heads: 1

Output dim: 256 Pool: Global Average

Prototype embeddings are then created for each represen-

tative class in the dataset with dimensionality equal to the

GNN input dimension. The entire model is then trained

end-to-end with the following hyperparameters:

Batch size: 400 LR Schedule: Cos. anneal.

Epochs: 100 Weight decay: 5 × 10−4

Learning rate: 1 × 10−4 Sampling: Stratified

With a ResNet50 image encoder and the Matador-C1

classes, the model contains 28.0 M parameters. Training

is performed on NVIDIA A6000 Ada GPUs, and if training

does not use rendered novel views, it can complete training

in under 30 minutes on a single GPU.

We present the performance of our hierarchical graph at-

tention network on Matador-C1 (Color) for each class in

each level of the taxonomy in Fig. S3. Through hierarchi-

cal learning, our model exhibits high accuracy at each level.

A hierarchical model allows recognition to appropriate lev-

els of specificity depending on the application task, with

increasing recognition performance at coarser levels.

In Tab. S2, we present additional evaluations on

Matador-C1. We evaluate our model and competing meth-

ods on color and grayscale images, finetuning competing

methods in two ways. In each case, our hierarchical model

achieves state-of-the-art classification accuracy.

S4. Material Properties

To enable intelligent systems operating in the physical

world, we aggregated a table of mechanical properties

(Tab. S3) containing the materials of the taxonomy de-

scribed in Sec. 3. After visual recognition of a material,

the properties present in the table can be used to plan inter-

actions within the environment. For example, if a material

is deformable, it will require different handling than if it

were rigid. To this end, Tab. S3 is composed of approxi-

mate ranges of material density, surface roughness, elastic-

ity, and strength. Its content is retrieved from common text-

books, engineering specification sheets, material databases,

and academic publications. These material properties vary

in precision – engineered materials (e.g., metals, ceramics,

and plastics) are studied extensively and thus their property

ranges are well known. For natural materials (e.g., foliage,

moss, and grass), rough estimates are provided.
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