
PathDiff: Histopathology Image Synthesis with Unpaired Text and Mask
Conditions

Supplementary Material

1. Scaling Augmentation in Downstream Tasks
To evaluate the impact of synthetic data augmentation on
downstream tasks, we designed three augmented sets for
training the CellViT [9] model on the PanNuke [4] dataset.
These augmented datasets were generated from the training
split, conditioned on mask, and evaluated on the real test
split. They were incrementally added to the training process
while keeping the size of the real train split constant.

Scaling the augmentation set progressively improves the
classification and segmentation performance of the training
data, as shown in Fig. 1, with the 3x and 2.5x augmented
synthetic datasets outperforming the relatively smaller ones
on all metrics. After 2.5x, the performance metrics plateau.
These results demonstrate that PathDiff effectively con-
tributes valuable synthetic data in every augmented set, con-
sistently improving model performance across all down-
stream tasks as the size of the synthetic set increases, high-
lighting PathDiff generates diverse high-quality data for
histopathology image analysis.

2. Qualitative Comparison of Synthetic Images
In this section, we present a qualitative comparison of
synthesized images generated by PathDiff, DiffMix [12],
SDM [17], and ControlNet [19].

2.1. Mask-to-Image examples
Fig. 2 shows a comparison of synthetic images generated on
the PanNuke [4], CoNIC [5], and MoNuSAC [16] datasets.
As illustrated in the figure, images generated by DiffMix
appear very coarse with additional artifacts and fail to pre-
serve the accurate stain colors observed in the original im-
ages. Consistent with observations reported by [11], we find
that SDM-generated images display unrealistic color over-
lay artifacts. The color distribution of ControlNet-generated
images appears highly inconsistent, being significantly in-
accurate in some cases while better than others in certain
instances. On the other hand, PathDiff accurately follows
the cell mask and maintains the cell stain colors as seen in
the original images.

2.2. Text-to-Image examples
Fig. 4 shows samples generated by PathDiff and Control-
Net. As with images conditioned on masks, ControlNet
fails to preserve details in the original image and exhibits
implausible colors uncommon in histopathology images.
This explains the high FID and KID values compared to

PathDiff in Tab.3 of the main paper.

2.3. Unified Paired Conditions Sampling
Fig. 3 shows images generated from paired Text and silver
standard masks. PathDiff generated images incorporated
guidance from both Text and Mask successfully and look
significantly better than ControlNet.

3. Domain Expert Assessment
We acknowledge that traditional fidelity metrics like
FID [7] are only somewhat applicable to histological im-
ages as large image datasets like ImageNet [2] are unlikely
to contain images from this specific domain. Therefore, we
conduct expert evaluation to validate the efficiency of the
generated samples. We surveyed two domain experts—a
physician and a pathology researcher—to review the gen-
erated data and assess if the samples accurately reflect the
characteristics of real specimens.

Image Preference Experiment: We presented domain
experts with a total of 200 synthetic images (Quadruplets of
50) generated from PathDiff, SDM [17], ControlNet [19],
DiffMix [12]. Each Quadruplet of images was generated us-
ing the same conditional mask. Domain experts were asked
to choose one of the four images that looked most real. As
shown in Fig. 5, both domain experts preferred PathDiff-
generated images significantly more than the existing SOTA
methods, indicating our generated images look more realis-
tic to an expert eye compared to others.

Predicted Label

Actual Label Real Synthetic

Synthetic 15 12
Real 11 16

Table 1. Confusion matrix for a domain expert distinguishing Real
vs. Synthetic images.

Expert Turing Test: In this experiment, a domain ex-
pert (physician) was presented with a total of 54 samples in
equal numbers of real and synthetic images in random or-
der. Real labels of images are hidden. We ask to choose
whether the given image looks

Tab. 1 shows domain expert’s performance in distin-
guishing real from synthetic images. Out of 27 synthetic
images, 12 were correctly identified, while 15 were mis-
taken as real. Among 27 real images, 11 were correctly
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Figure 1. Comparison of segmentation and classification metrics on the PanNuke [4] dataset across augmentation scaling factors.
The addition of PathDIff-generated synthetic data consistently increases downstream classification and segmentation performance. 1x uses
one synthetic augmentation set equal to the real train split size; 1.5x adds another synthetic set equal to 1.5 times the real train split size
and so on. After 2.5x, the performance metrics plateau.

Algorithm 1 Unified Conditional Sampling
Require: ω: guidance strength

Define c ∈ {(∅m, ct), (cm,∅t), (cm, ct)}
{1, . . . , T}: timesteps with decreasing noise schedule α = {αt}Tt=1

1: Initialize: zT ∼ N (0, I)
2: for t = T to 1 do
3: ▷ Form classifier-free guided score at timestep t

ϵ̃θ(zt, t, c) = (1+ ω)ϵθ(zt, t, c)− ωϵθ(zt, t)
4: ▷ Denoise step to obtain intermediate sample z̃t

z̃t =
zt−

√
1−ᾱt ϵ̃θ(zt,t,c)√

ᾱt

5: if t > 1 then
6: Sample zt−1 ∼ N (µθ(zt, z̃t, t),Σθ(zt, t))
7: else
8: z0 = z̃t
9: end if

10: end for
11: return z0

labeled, with 16 falsely classified as synthetic. The overall
accuracy was approximately 42.6. This indicates the user
found it somewhat challenging to differentiate real from
synthetic images. real or synthetic.

4. Sampling Algorithm

We use classifier-free guidance to sample from conditional
and unconditional diffusion models to update the final
score. Algorithm 1 gives an overview of the sampling. We
either randomly pair the conditions from non-overlapping
M2I and T2I datasets or generate silver standard masks for
T2I dataset (or can generate caption/relevant text condition
for M2I dataset).

5. Considerations for psplit

When training jointly on two datasets—Text-to-Image and
Mask-to-Image—psplit controls the proportion of data sam-
pled from each of them. We evaluate performance with
three values of psplit: 0.2, 0.5, and 0.8. Results using only
text are shown in Table 2, mask-only conditioning in Tab. 3,
and both text and mask conditioning in Tab. 4.

In these experiments, psplit = 0.5 strikes a balance,
explaining why we chose this value in the main paper.
While it seems logical to assign a larger probability to the
larger dataset to cover more of its samples, we found that
psplit = 0.5 works well in practice, ensuring samples from
both datasets are included at least once per epoch.

psplit
PathCap: Train PathCap: Test

FID ↓ KID ↓ PLIP ↑ FID ↓ KID ↓ PLIP ↑
psplit = 0.2 16.33 0.0624 24.43 15.74 0.0603 24.50
psplit = 0.5 18.52 0.0619 24.18 19.60 0.0644 24.05
psplit = 0.8 19.58 0.0649 24.34 18.87 0.0626 24.27

Table 2. Considerations for psplit. CLIP-FID [7, 13], KID [1],
and PLIP [8] similarity scores for different psplit values on Path-
Cap [15], with text condition ct used for sampling. PLIP [8] simi-
larity scores on the real PathCap train and test splits are 26.34 and
26.56, respectively, provided as a reference for comparison.

psplit
PanNuke: Train PanNuke: Test

FID ↓ KID ↓ FID ↓ KID ↓
psplit = 0.2 7.36 0.0525 7.88 0.0559
psplit = 0.5 6.94 0.0389 7.28 0.0415
psplit = 0.8 8.57 0.0584 8.97 0.0707

Table 3. Considerations for psplit. CLIP-FID [7, 13], KID [1] for
different psplit values on PanNuke [4] dataset. Only mask condi-
tion cm was used for sampling.

6. In-Domain FID Results
For a more faithful assessment of pathology image qual-
ity, we compute an in-domain FID using the CONCH [10]
encoder rather than relying solely on CLIP or Inception-
based features, which were trained on general natural im-
ages and may not capture the nuances of histopathology.
CONCH [10] is a foundation model trained on large pathol-
ogy image-text pairs.
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Figure 2. Qualitative comparison of synthetic images generated by PathDiff, DiffMix [12], SDM [17], and ControlNet [19] on the
CoNIC [5], MoNuSAC [16], and PanNuke [4] datasets.



Histopathology 
demonstrating organized 
hematic material that 
includes fungal organism 
with narrow-angle 
branching septate 
hyphae.

Microscopic review of 
dual pathologies shows 
meningioma containing 
foci of large B-cell 
lymphoma, characterized 
by dense aggregates of 
cells with marked nuclear 
enlargement and 
hyperchromasia.

Hematoxylin- and eosin-
stained section of a CT-
guided core biopsy of the 
liver lesion shows well-
differentiated to 
moderately 
differentiated 
hepatocellular 
carcinoma in a trabecular 
pattern.

A cell block from a 
pleural effusion with a 
metastatic lung 
adenocarcinoma. 
Hematoxylin–eosin stain.

The first transbronchial 
biopsy specimen shows 
adenocarcinoma.

ControlNet generated imagesPathDiff Generated ImagesOriginal Images with corresponding Silver Standard 
Masks and Texts

Figure 3. Qualitative comparison of Pathdiff and ControlNet generated images on paired Silver standard masks and texts.

psplit

PanNuke PathCap

Train Test Train Test

FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ PLIP ↑ FID ↓ KID ↓ PLIP ↑
psplit = 0.2 10.25 0.0672 11.99 0.0800 15.21 0.0846 23.01 16.07 0.0956 22.81
psplit = 0.5 11.03 0.0718 12.32 0.0952 14.39 0.0884 23.01 14.26 0.1059 22.80
psplit = 0.8 9.723 0.0729 10.37 0.0862 12.78 0.0955 22.97 12.53 0.1107 22.70

Table 4. Consideration for psplit. CLIP-FID [7, 13], KID [7], and PLIP [8] similarity scores for different psplit values for PanNuke [4]
and PathCap [15]. We used both text ct and mask cm for sampling.

7. Mask Depth Ablation

We test the effect of using two types of conditioning mask,
first cell type mask and other is instance mask. We gener-
ate mask edges from instance mask using image processing
technics. Using both masks generates better quality images
as seen in Tab. 7, subsequently we use the mask depth of 6.

We simply increase the channel size of the Mask embedder
M and concatenate two masks as input.

8. Choice of Pretrained Checkpoints

We evaluated different pretrained checkpoints choices in
three module components: VAE, Text-Encoder,and U-Net.



Histological section of 
the  adrenal metastatic 
disease showing tumor 
cells of varying sizes 
with oval shapes, 
eosinophilic cytoplasm, 
and
 prominent small 
nucleoli.

Microphotograph of 
histology of the 
symptomatic upper outer 
quadrant lesion of the 
right breast showing 
multiple papillomatosis 
and low grade ductal 
carcinoma in situ (DCIS).

Microscopic findings of a 
large cell 
neuroendocrine 
carcinoma showing 
sheets of tumor cells 
with a trabecular or 
organoid growth pattern 
in the subcutaneous 
area.
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H&E staining 
revealed glandular 
ductal cancer cells.

Post-operative 
specimen showing 
gram-positive cocci 
with dense 
neutrophilic 
aggregates.

Inflammatory cell 
infiltration was 
observed at the edge 
of the ulcer of the 
duplication intestine, 
without the presence 
of heterotopic gastric 
mucosa.

Dilated blood vessel that 
replaces the 
hematogenous marrow.

Histological appearance 
of disseminated 
peritoneal 
leiomyomatosis tumor 
showing myxoid matrix 
infiltrated into adipose 
tissue.

Figure 4. Qualitative comparison of synthetic images generated by PathDiff and ControlNet [19] on the PathCap [15] dataset.



Figure 5. Both domain experts significantly preferred PathDiff
generated images over other methods.

Method PanNuke CoNIC MoNuSAC

Diffmix 119.35 257.92 290.27
SDM 177.30 143.48 166.65
ControlNet 121.57 174.74 277.96
PathDiff 53.74 91.21 121.61

Table 5. Comparison of CONCH-FID across training splits for
PanNuke [4], CoNIC [5], and MoNuSAC [16]. PathDiff is trained
jointly with T2I dataset: PathCap [15]. ControlNet [19] uses
SD [14] backbone trained on the PathCap dataset.

Method PanNuke CoNIC MoNuSAC

ControlNet 347.77 343.39 331.61
PathDiff 153.77 156.21 141.88

Table 6. Comparison of CONCH-FID on training splits for
T2I dataset: PathCap. PathDiff is jointly trained with three M2I
datasets: PanNuke [4], CoNIC [5], and MoNuSAC [16].

# mask depth PanNuke Test

IP ↑ IR ↑ CONCH FID ↓ KID ↓
3 0.79 0.47 102.37 0.0644
6 0.72 0.77 7.21 0.0415

Table 7. Mask depth ablation on PanNuke test split

Finetuning VAE The reconstruction performance of
VAEs [14, 18] plays a crucial role in the fidelity of gener-
ated images. Losses introduced during the compression and
decompression stages in VAEs compound with the denois-
ing process losses in subsequent stages, directly impacting
the quality of the generated images.

Initially, we used the VQ-VAE from [18], which was
trained on the TCGA-BRCA [3] dataset containing whole-
slide images (WSIs) exclusively from breast tissues. While

this VAE outperforms the one from [14], which was trained
on natural images, its applicability is limited as it lacks rep-
resentation of diverse tissue types. We fine-tuned the VAE
on the datasets used in this work, including PanNuke [4],
PathCap [15], CoNIC [5], and MoNuSAC [16].

As demonstrated in Tab. 8, fine-tuning the VAE on
these datasets results in improvements across all reconstruc-
tion and generation metrics. However, these improvements,
while consistent, are relatively modest.

VAE Trained on Metrics

LPIPS ↓ SSIM ↑ MSE ↓ FID ↓
TCGA-BRCA [3] 0.0462 0.7962 0.0084 6.94
Datasets: D 0.0429 0.8212 0.0070 6.31

Table 8. Effect of fine-tuning VAE on datasets D: PanNuke [4],
PathCap [15], MoNuSAC [16], and CoNIC [5].

Text Encoder To evaluate text–image alignment on the
PathCap training set, we compared the similarity between
each image and its corresponding report using two embed-
ding methods. The CLIP-based similarity score was 21.56,
while the PLIP-based score reached 26.30; clearly demon-
strating that PLIP embeddings achieve stronger alignment
between images and text. Therefore we used PLIP text en-
coder checkpoint in our experiments.

Denoising U-net We fine-tune the U-Net on the Path-
Cap Text-to-Image dataset starting from the TCGA-BRCA
checkpoint provided by [6]. The results are summarized
in Tab. 9. We see improved CLIP-FID and KID scores for
Mask-to-Image generation on PanNuke, as well as a higher
PLIP similarity score for Text-to-Image generation on Path-
Cap.

U-Net Checkpoint CLIP FID ↓ PLIP Score ↑ KID ↓

TCGA-BRCA 14.44 21.79 0.1284
PathCap 7.21 24.05 0.0410

Table 9. Comparison of U-Net checkpoints on CLIP FID, PLIP
score, and KID

9. Significance Test on Downstream Task:
We validate that PathDiff’s higher downstream scores aren’t
due to chance by running a paired permutation test. We
randomly swap method labels within each test example and
compare mean F1/Dice across 1000 trials. The resulting
p-values are < 0.05, confirming PathDiff’s gains are statis-
tically significant as seen in Fig. 6.



Figure 6. Pairwise significance test, p < 0.05 indicates that PathDiff augmentation set helps improve downstream classification and
segmentation tasks statistically significantly as compared to other methods.

10. Generation Performance on Hard Pathol-
ogy Cases

To assess how well PathDiff handles challenging, clinically
significant images, we split our test set into “pathological”
(reports mentioning “carcinoma”) and “non-pathological”
cases (reports describing benign findings). Table 10 com-
pares FID, KID, and PLIP scores for each group. Although
overall image fidelity remains similar, lower PLIP scores for
pathological cases suggest that images with malignant fea-
tures are marginally more difficult to synthesize than benign
ones.

Table 10. Performance on pathological vs. non-pathological cases

Case Type FID ↓ KID ↓ PLIP ↑

Pathological 19.97 0.04 23.15
Non-pathological 20.10 0.06 24.13

11. Details on training previous works:
Diffmix and SDM are trained on M2I datasets only. We
use their official repositories to refer to their code. For both
DiffMix and SDM we use same training settings for all M2I
datasets that of PanNuke [4] in [12]. For ControlNet we
pre-trained SD[14] model on T2I data first and then used
only M2I data for finetuning, as recommended in the official
controlnet tutorial.

12. Computational Costs:
Since PathDiff only trains U-Net encoder and shallow mask
embedder, training costs remain modest, even for joint
training. PathDiff trains 694 M parameters. Training time
for the largest dataset combination (PathCap [15] + Pan-
Nuke [4]) is 30 Hours on 4 NVIDIA A6000 GPUs. Sam-

pling 6,300(train split of PanNuke) images takes 3.5-4.5
hours.

13. Survey Tool:
We used an interactive web-based tool to conduct a domain
expert’s survey. Clear instructions were given to evaluate
the images. Fig. 7 and Fig. 8 show the web interface used
for the domain expert image preference experiment and the
Turing test respectively.
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