
LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization
Refinement

Supplementary Material

9. Additional Experiments Results
In this section, we provide additional experimental details
and results to further validate our proposed method, LoRA-
FAIR.

9.1. Convergence Performance
We present the convergence performance of our proposed
method compared to baseline methods using the ViT or
MLP-Mixer model under feature non-IID setting. As shown
in Fig. 7 and Fig. 8, our proposed method consistently out-
performs all baseline methods. These results are consistent
with those in the main paper (Tab. 2), further validating the
robustness of our approach.

Figure 7. Comparison of average accuracy across training
rounds on DomainNet (left) and NICO++ (right) datasets using
the ViT model. The shaded area indicates the variance across mul-
tiple runs. For more details, refer to Sec. 5.1.

Figure 8. Comparison of average accuracy across training
rounds on DomainNet (left) and NICO++ (right) datasets using
the Mixer model. The shaded area indicates the variance across
multiple runs. For more details, refer to Sec. 5.1.

9.2. Adaptation for Clients with Heterogeneous
LoRA Ranks

Our proposed method primarily focuses on settings where
clients have the same LoRA rank, addressing challenges
such as server aggregation bias and client initialization lag
when combining LoRA with federated learning. However,
our approach can be extended to scenarios where clients
have heterogeneous LoRA ranks.

Figure 9. Comparison of computational time between the client
and the server. See details in Sec. 9.3

The state-of-the-art method for handling heterogeneous
ranks in FL is HETLoRA [7], which employs zero-padding
and truncation for distribution. It is important to note that
HETLoRA is specifically designed for heterogeneous set-
tings and operates orthogonally to our proposed method.
By integrating zero-padding and truncation for distribu-
tion into LoRA-FAIR, our method can effectively operate
in heterogeneous rank settings. We evaluate this adapta-
tion using the DomainNet dataset with ViT as the founda-
tion model. The client data distribution and training set-
tings are consistent with those used in the feature non-
IID experiments in the main paper. The clients LoRA
ranks are set as {2, 4, 4, 6, 6, 8}. The results, presented in
Tab. 6, demonstrate that our proposed method, combined
with zero-padding and truncation, achieves the best perfor-
mance compared to existing methods, validating its effec-
tiveness in heterogeneous rank scenarios. We note that due
to the heterogeneous LoRA ranks, FedIT and FFA-LoRA
are not suitable for this setting and are therefore excluded
from the experiment. While FLoRA can operate under het-
erogeneous settings, it is not included in the results as it fails
to converge in our experiments. This failure underscores
its limitation of directly adding updates to the pre-trained
model rather than updating the LoRA modules.

9.3. Server-Side Computational Overhead Analysis
Our proposed method addresses both server aggregation
bias and client initialization lag by solving Eq. (8), intro-
ducing only a small computational overhead on the server
side. In our main experiment, we solve Eq. (8) using SGD
with a learning rate of 0.01 and 1000 iterations. However,



Method Clipart Infograph Painting Quickdraw Real Sketch Average

HETLoRA 73.96 42.57 74.49 27.52 87.05 59.74 60.89
FlexLoRA 83.11 52.43 78.63 62.30 88.23 77.32 73.50

LoRA-FAIR + HETLoRA 83.40 52.25 79.28 63.24 89.40 77.74 74.22

Table 6. Performance comparison with baselines across different domains on DomainNet using ViT model with client having heteroge-
neous LoRA rank. Average means the average accuracy across all domains. See details in Sec. 9.2.

Method Local Epoch Clipart Infograph Painting Quickdraw Real Sketch Average !

FLoRA 2 85.15 53.51 79.43 70.09 89.25 77.20 75.53 -
Proposed 2 86.25 56.26 80.09 71.25 89.52 79.06 77.07 +1.54

FLoRA 10 83.81 52.91 78.36 61.25 88.68 76.57 73.60 -
Proposed 10 85.20 53.39 79.03 61.51 89.24 77.47 74.31 +0.71

Table 7. Limitation of FLoRA’s Reinitialization. FLoRA’s reini-
tialization strategy fails to learn an optimal client update under
smaller local training, leading to suboptimal model performance.
See Sec. 9.4 for details.

this additional cost is minimal and can be considered neg-
ligible given the substantial computational resources typi-
cally available on servers. Moreover, a comparison of train-
ing times, as shown in Fig. 9, demonstrates that the time
required to solve Eq. (8) on the server is minimal compared
to the client-side local training time.

9.4. Limitation of FLoRA’s Reinitialization
We evaluate performance under different local epochs. In
our main experiments with the feature non-IID setting, we
set the number of local epochs to 2 and the number of global
rounds to 50. Here, we test a configuration where the local
epochs are set to 10, and accordingly, the global rounds are
reduced to 10 to maintain a fixed total number of updates.
The results indicate that a shorter local epoch with more fre-
quent updates leads to better performance for both the pro-
posed method and FLoRA. This finding is consistent with
[48], which suggests that the number of local epochs should
not be too high in a non-IID FL setting. Furthermore, with
shorter local epochs, the performance gap between our pro-
posed method and FLoRA increases, further validating that
FLoRA’s reinitialization strategy fails to learn an optimal
client update under limited local training, ultimately de-
grading the final model performance.

10. Prior Works
In this section, we review existing methods and their limi-
tations.
FedIT [46]: FedIT is the earliest approach to integrate
LoRA with FedAvg. In FedIT, each client starts with a
fixed pre-trained foundation model and trains local LoRA
modules, represented as low-rank matrices Ak and Bk, on
its private dataset. The server aggregates these local matri-
ces into global LoRA modules through a weighted average
based on data size. While computationally efficient, this

method introduces server-side aggregation bias.
FFA-LoRA [33]: FFA-LoRA freezes the non-zero ini-
tialized low-rank matrix A and updates only the zero-
initialized matrix B. By freezing A, the actual global up-
date becomes equal to the ideal global update (i.e., !W =
!W→), addressing server-side aggregation bias. However,
freezing A significantly reduces the number of trainable
parameters, limiting the model’s capacity. Our experi-
ments confirm that although FFA-LoRA resolves aggrega-
tion bias, its limited parameter flexibility results in worse
performance compared to other baselines.
FLoRA [42]: FLoRA stacks local LoRA modules from
all clients and transmits the stacked modules back to each
client to reconstruct global updates, which are then added
directly to each client’s pre-trained model while reinitializ-
ing local LoRA modules for the next training round. Al-
though FLoRA effectively addresses server-side aggrega-
tion bias, it incurs high communication costs proportional
to the number of clients and raises privacy concerns, as
it distributes all clients’ LoRA modules rather than only
the averaged ones. Additionally, FLoRA’s reinitialization
strategy introduces Client-Side Initialization Lag. Frequent
reinitialization results in small gradient updates, leading to
inefficient training and suboptimal performance.
FlexLoRA [2]: FlexLoRA reformulates each client’s lo-
cal LoRA modules into a local update, sums these updates
to generate a global update, and applies SVD to produce
global LoRA modules. These modules are then distributed
to clients as initialization for the next round. While this
approach formulates an ideal global update, it still suffers
from server-side aggregation bias due to the SVD step.
For example, consider two clients, each with rank-8 LoRA
modules (Rank(!W1) = 8 and Rank(!W2) = 8), re-
sulting in a global update with Rank(!W ) → 16. Using
SVD to produce global modules with a rank of 8 may lead
to information loss, preventing the transmission of an ideal
global update to clients.
Comparison to Existing Efficient Weight Aggregation
FL Methods. Our work identifies a gap in existing feder-
ated learning methods concerning fine-tuning with LoRA.
While prior approaches—such as layer-wise model aggre-
gation [25], elastic aggregation [6], and related layer-wise
techniques [18, 30]—have demonstrated effectiveness in
general federated optimization, they are not well-suited for



LoRA-based fine-tuning. Specifically, these methods do not
address how to decompose aggregated model updates into
the necessary LoRA modules for client model initialization,
nor do they provide strategies to avoid the direct transmis-
sion of these updates. To overcome these limitations, our
method tailors the aggregation process specifically for fed-
erated fine-tuning with LoRA, bridging the gap left by ex-
isting techniques.

11. Theorem
Theorem 11.1. For analytical tractability, we consider the

case where the similarity metric S is based on the Frobe-

nius norm. The residual correction term !B obtained by

minimizing Equation (8) guarantees that (B̄ + !B)Ā ap-

proaches the ideal global update !W with the following

approximation guarantee:

↑(B̄+!B↑)Ā↓!W↑2F

→↑!W ↓ B̄Ā↑2F ·
(
1↓ ω2

min(Ā)

ω2
min(Ā) + ε

)2

, (9)

here ωmin(Ā) is the smallest non-zero singular value of Ā.

Proof. Let’s denote E = !W ↓ B̄Ā as the initial aggre-
gation error. Our objective function becomes:

J(!B) = ↑!BĀ↓E↑2F + ε↑!B↑2F (10)

To find the critical points of J(!B), we take the deriva-
tive with respect to !B and set it equal to zero:

↔!BJ(!B) = 2(!BĀ↓E)ĀT + 2ε!B = 0 (11)

Solving for the optimal !B↑:

!B↑ = EĀT (ĀĀT + εI)↓1, (12)

where I is the identity matrix of appropriate dimensions.
Substituting back the definition of E:

!B↑ = (!W ↓ B̄Ā)ĀT (ĀĀT + εI)↓1 (13)

The residual error after applying the correction is:

Eresidual = ↓E+!B↑Ā

= ↓E+EĀT (ĀĀT + εI)↓1Ā

= E(↓I+ ĀT (ĀĀT + εI)↓1Ā) (14)

Let’s define the matrix M = ↓I+ĀT (ĀĀT +εI)↓1Ā.
For any matrix Ā, the eigenvalues of ĀT (ĀĀT + εI)↓1Ā

can be bounded using the properties of matrix norms and
the Sherman-Morrison-Woodbury formula:

ĀT (ĀĀT + εI)↓1Ā = ĀT Ā(ĀT Ā+ εI)↓1 (15)

The eigenvalues of this matrix are of the form µi

µi+ω , where
µi are the eigenvalues of ĀT Ā. Since the eigenvalues
of ĀT Ā are the squares of the singular values of Ā, i.e.,
µi = ω2

i , the eigenvalues of ĀT (ĀĀT +εI)↓1Ā are ε2
i

ε2
i+ω

.
Therefore, the eigenvalues of M = ↓I + ĀT (ĀĀT +

εI)↓1Ā are ↓1 + ε2
i

ε2
i+ω

= ↓ ω
ε2
i+ω

.
The spectral norm of M is the maximum absolute eigen-

value:

↑M↑2 = max
i

∣∣∣∣
↓ε

ω2
i + ε

∣∣∣∣ =
ε

ω2
min + ε

(16)

Using the property that for any matrices P and Q,
↑PQ↑F → ↑P↑F ↑Q↑2, we have:

↑Eresidual↑F = ↑EM↑F (17)
→ ↑E↑F ↑M↑2 (18)

= ↑E↑F · ε

ω2
min + ε

(19)

Since ω
ε2
min+ω

= 1↓ ε2
min

ε2
min+ω

, we have:

↑Eresidual↑F → ↑E↑F ·
(
1↓ ω2

min

ω2
min + ε

)
(20)

Squaring both sides and substituting E = !W ↓ B̄Ā, we
get our final bound.

Corollary 11.2. When ε = 0 and Ā has full row rank, there

exists an exact solution where:

(B̄+!B↑)Ā = !W

As the regularization parameter ε increases, the solution
balances two objectives:
1. Minimizing the approximation error to the ideal update

!W
2. Preventing large deviations from the averaged LoRA

module B̄

Theorem 11.3 (Convergence of Federated LoRA Fine–
Tuning). Under standard FL assumptions (L-smooth loss,

bounded gradients G, E local epochs), and assuming the



global learning rate ϑ, the convergence of federated LoRA

fine-tuning after T rounds is:

1

T

T↓1∑

t=0

E[↑↔L(W t)↑2] → 4[L(W 0)↓ L(W ↑)]

ϑT

+ 4ϑ2E2G2

(
L2

2
+ 1

)
+ 8

1

T

T↓1∑

t=0

↑!W t ↓ B̄tĀt↑2F · ϖ

where ϖ characterizes the aggregation method: 1. For

LoRA-FAIR: ϖ =
(
1↓ ε2

min(Ā
t)

ε2
min(Ā

t)+ω

)2
< 1. 2. For FedIT

(standard aggregation): ϖ = 1

Proof. At round t, the global model update is:

W t+1 = W t ↓ ϑ ·!W →t (21)

where !W →t = (B̄t + !B↑t)Āt for LoRA-FAIR and
!W →t = B̄tĀt for FedIT. The ideal global update is:

!W t =
K∑

k=1

pkB
t
kA

t
k (22)

Define the aggregation error:

Et
agg = !W t ↓!W →t (23)

From Theorem A.1, for LoRA-FAIR:

↑Et
agg↑2F → ↑!W t ↓ B̄tĀt↑2F · ϖ (24)

Using L-smoothness:

L(W t+1) → L(W t) + ↗↔L(W t),W t+1 ↓W t↘

+
L

2
↑W t+1 ↓W t↑2 (25)

= L(W t)↓ ϑ↗↔L(W t),!W →t↘

+
Lϑ2

2
↑!W →t↑2 (26)

Decomposing !W →t = !W t ↓ Et
agg:

↗↔L(W t),!W →t↘ = ↗↔L(W t),!W t↘
↓ ↗↔L(W t), Et

agg↘ (27)

Under bounded gradients:

↗↔L(W t),!W t↘ ≃ 1

2
↑↔L(W t)↑2 ↓ ϑ2E2L2G2

2
(28)

For the error term:

↗↔L(W t),↓Et
agg↘ →

1

4
↑↔L(W t)↑2 + ↑Et

agg↑2 (29)

Combining bounds:

L(W t+1) → L(W t)↓ ϑ

4
↑↔L(W t)↑2 + ϑ3E2L2G2

2

+ ϑ↑Et
agg↑2 +

Lϑ2

2
↑!W →t↑2 (30)

Using ↑!W →t↑2 → 2(↑!W t↑2 + ↑Et
agg↑2) and the

bound on Et
agg:

L(W t+1) → L(W t)↓ ϑ

4
↑↔L(W t)↑2 + ϑ3E2L2G2

2

+ ϑ↑Et
agg↑2 +

Lϑ2

2
(2(↑!W t↑2 + ↑Et

agg↑2))

→ L(W t)↓ ϑ

4
↑↔L(W t)↑2 + ϑ3E2L2G2

2
+ ϑ↑Et

agg↑2 + ϑ(ϑ2E2G2 + ↑Et
agg↑2)

→ L(W t)↓ ϑ

4
↑↔L(W t)↑2 + ϑ3E2L2G2

2
+ 2ϑ↑Et

agg↑2 + ϑ3E2G2 (31)

where ϑ < 1
L . Then we have:

L(W t+1) → L(W t)↓ ϑ

4
↑↔L(W t)↑2 + ϑ3E2L2G2

2
+ 2ϑ↑!W t ↓ B̄tĀt↑2F · ϖ + ϑ3E2G2 (32)

Rearranging and taking expectation:
ϑ

4
E[↑↔L(W t)↑2] → E[L(W t)]↓ E[L(W t+1)]

+
ϑ3E2L2G2

2
+ ϑ3E2G2

+ 2ϑ↑!W t ↓ B̄tĀt↑2F · ϖ (33)

Then by summing over t:

ϑ

4

T↓1∑

t=0

E[↑↔L(W t)↑2] → L(W 0)↓ E[L(WT )]

+ Tϑ3E2G2(
L2

2
+ 1)

+ 2ϑ
T↓1∑

t=0

↑!W t ↓ B̄tĀt↑2F · ϖ

(34)

dividing both sides by ϑ
4 and T, we have:

1

T

T↓1∑

t=0

E[↑↔L(W t)↑2] → 4

Tϑ
[L(W 0)↓ L(W ↑)]

+ 4ϑ2E2G2(
L2

2
+ 1)

+ 8
1

T

T↓1∑

t=0

↑!W t ↓ B̄tĀt↑2F · ϖ

(35)



With ϑ = 1↔
T

, we finally get:

1

T

T↓1∑

t=0

E[↑↔L(W t)↑2] → 4[L(W 0)↓ L(W ↑)]⇐
T

+ 4ϑ2E2G2(
L2

2
+ 1)

+ 8
1

T

T↓1∑

t=0

↑!W t ↓ B̄tĀt↑2F · ϖ

(36)

As data becomes more non-IID, ↑!W ↓ B̄Ā↑F in-
creases, leading to a larger error term in standard methods.
LoRA-FAIR reduces this impact by the factor ϖ < 1, pro-
viding tighter convergence bounds especially in highly non-
IID settings.


