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1. Implementation Details

1.1. Diffusion Training
The point clouds in ScanNetV2 [6] are confined to the pos-
itive octant of the coordinate system, with the xy-plane
aligned to the floor. To enhance the diversity of the train-
ing data, we first re-center the point clouds by shifting their
xy coordinates so that their centers align with the origin.
During each forward iteration, we randomly sample 5,120
points from one scene and apply data augmentation by ran-
domly rotating the point cloud along each axis, adding a
random translation sampled from a normal distribution with
zero mean and unit variance, and applying a random scal-
ing factor sampled from a uniform distribution in the range
[0.5, 1.5). Before passing a point cloud to the diffusion
model, we re-scale it with a scale factor of 20 to ensure
that most points lie within the range [−1, 1]. Finally, diffu-
sion noise is added to the point cloud following the standard
DDPM schedule [9].

1.2. SCR Mapping with Diffusion
During SCR mapping, the point clouds output by the
Scene Coordinate Regression network are re-scaled using
the same scale factor (20) as during training, before be-
ing fed into the diffusion model for noise estimation. If
the batch size exceeds 5,120, we randomly subsample the
points down to 5,120 to compute the diffusion regulariza-
tion. This step is taken to prevent excessive processing time
during point cloud encoding when the point cloud size is
large. To balance the magnitude of diffusion regularization
against the reprojection loss, we adopt the gradient normal-
ization approach from DiffusionNeRF [24]. Specifically,
the gradient of the regularization term is normalized with
respect to itself and then scaled by a weight. In all exper-
iments, this weight is set to 1,000, with a warm-up phase
spanning the first 1,000 iterations after diffusion regulariza-
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tion begins at iteration 5,000 of SCR mapping. During this
warm-up, the weight increases linearly from 0 to 1,000.

1.3. Prior Weights
For the depth distribution priors, we utilize a weight of
λreg = 0.1. For the depth prior using RGB-D images, we
use a weight of λreg = 1. These weights have been found by
monitoring the magnitude of gradients stemming from the
priors and the reprojection error during some mapping runs
on ScanNet training sequences. For the weighting schema
of the diffusion prior, see the previous section.

1.4. Diffusion-ACE Alignment
See Fig. 1 for a visualization of the ACE mapping process
versus a reverse diffusion process on the same scene. The
beginning of ACE mapping does not align well with diffu-
sion, hence we apply the diffusion prior only after a stand-
by time of 5k iterations.

1.5. Point Cloud Visualization
Our point cloud visualizations were generated using the vi-
sualization code from PointFlow [25].

1.6. Details of Baseline Approaches
For ACE [4] and GLACE [23], we use their public code to
reproduce their results on 7Scenes which have slight differ-
ences with the results reported in their original papers. Sim-
ilarly, we obtain the results of ACE and GLACE on Indoor6
by running their code using the default settings.

2. Additional Results
2.1. Relocalization Results
7Scenes We conduct experiments with an alternative set
of ground truth poses [3] stemming from an RGB-D SLAM
system [22]. The relocalization performance is shown in
Tab. 1. Analogously with the results obtained using SfM
poses, presented in the main paper, our priors improve per-
formance over the baseline models (ACE and GLACE) es-
pecially on the Stairs scene.
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Figure 1. Diffusion Process vs. ACE Training. The evolution of point clouds during ACE training does not match the forward diffusion
process over the full range. Hence, we align the diffusion time steps 10-0 with the ACE iterations 5,000-25,000.

Table 1. Relocalization Results on 7Scenes with SLAM Poses. We report the percentage of test images below a 5cm/5◦ pose error,
mapping time and map size. Methods in “SCR w/ 3D” use depth or 3D point cloud supervision during mapping. Best results within the
SCR groups are highlighted in bold.

Type Method Mapping Time Map Size Chess Fire Heads Office Pumpkin Redkitchen Stairs Avg

FM

AS (SIFT) [21] ∼1.5h ∼200MB N/A N/A N/A N/A N/A N/A N/A 68.7%
D.VLAD+R2D2 [10] ∼1.5h ∼1GB N/A N/A N/A N/A N/A N/A N/A 77.6%
hLoc (SP+SG) [18, 19] ∼1.5h ∼2GB N/A N/A N/A N/A N/A N/A N/A 76.8%
pixLoc [20] ∼1.5h ∼1GB N/A N/A N/A N/A N/A N/A N/A 75.7%

SC
R

w
/3

D DSAC* [2] 15h 28MB 97.3% 94.0% 99.7% 87.4% 62.9% 63.7% 83.4% 84.0%
SANet [26] 2.3min 550MB N/A N/A N/A N/A N/A N/A N/A 68.2%
SRC [7] 2min 40MB N/A N/A N/A N/A N/A N/A N/A 55.2%
ACE [4, 5] + DSAC* Loss [2] 5.5min 4MB 96.0% 94.0% 99.9% 84.5% 55.1% 57.8% 76.6% 80.6%
ACE + Laplace NLL (Ours) 5.5min 4MB 97.1% 94.8% 99.8% 86.4% 57.5% 59.2% 82.9% 82.5%

SC
R

DSAC* [2] 15h 28MB 95.3% 94.5% 98.1% 86.3% 61.6% 64.0% 67.6% 81.1%
GLACE [23] 6min 9MB 98.5% 93.7% 99.7% 90.2% 61.9% 73.9% 54.0% 81.7%
GLACE + Diffusion (Ours) 9min 9MB 98.9% 92.8% 99.3% 89.5% 64.3% 72.6% 56.4% 82.0%
ACE [4] 5min 4MB 96.7% 92.4% 99.7% 86.0% 59.2% 60.3% 68.9% 80.5%
ACE + Laplace NLL (Ours) 4.5min 4MB 96.6% 92.8% 99.8% 85.0% 57.8% 59.2% 72.4% 80.5%
ACE + Laplace WD (Ours) 4.5min 4MB 96.7% 94.0% 99.6% 85.7% 59.7% 59.4% 71.0% 80.9%
ACE + Diffusion (Ours) 8min 4MB 96.9% 93.8% 99.8% 85.7% 57.1% 59.8% 74.3% 81.1%

Indoor6 We report the per-scene relocalization results in
Tab. 2 for ACE and GLACE with and without our diffu-
sion prior. Results are averaged over 5 runs, except for
EGFS [13], where results are taken from its paper. Addi-
tionally, we include model variants where ‘50K’ denotes a
batch size of 51,200 points and ‘dual’ represents an ensem-
ble of two models trained on a pre-clustering of the mapping
camera poses [4]. For each variant, our model outperforms
its respective baseline, demonstrating improved relocaliza-
tion accuracy. Among SCR approaches, GLACE with our
diffusion prior achieves the highest accuracy on this dataset.

2.2. Depth Evaluation on 7Scenes

We assess the point cloud quality after ACE mapping with
and without our priors. To this end we compare depth

values derived from the predicted scene coordinates with
the ground truth depth images. In line with previous
works [8, 12, 17], we apply standard metrics, including:
Abs Rel, Sq Rel, RMSE, RMSE log, δ1, δ2 and δ3. They
are defined as follows:

• Abs Rel: 1
|V|

∑
d∈V ∥d− dgt∥/dgt;

• Sq Rel: 1
|V|

∑
d∈V ∥d− dgt∥22/dgt;

• RMSE:
√

1
|V|

∑
d∈V ∥d− dgt∥22;

• RMSE log:
√

1
|V|

∑
d∈V ∥ log d− log dgt∥22;

• δi: % of V s.t. max( d
dgt
,
dgt

d ) = δ < i;

where d is the estimated depth, dgt is the ground truth depth,
and V is the collection of all valid pixels on a depth map.



Table 2. Per-Scene Relocalization Accuracy on Indoor6. We report the percentage of test images below a 5cm, 5◦ pose error, mapping
time and map size. Methods in “SCR w/ 3D” use the 3D point cloud as supervision during mapping. ‘50K’ denotes a batch size of 51200
points and ‘dual’ represents an ensemble model with two clusters. Methods using our diffusion prior are denoted as -Diff.

Type Method Mapping Time Map Size scene1 scene2a scene3 scene4a scene5 scene6 Average

FM hLoc (SP+SG) ∼3.3 ∼1.5GB 70.5% 52.1% 86.0% 75.3% 58.0% 86.7% 71.4%

SCR
(w/ 3D)

DSAC* 15h 28MB 18.7% 28.0% 19.7% 60.8% 10.6% 44.3% 30.4%
SLD (300 LM) 5.5h 15MB 47.2% 48.2% 56.2% 67.7% 33.7% 52.0% 50.8%
SLD (1000 LM) 44h 120MB 68.5% 62.6% 76.2% 77.2% 57.8% 78.0% 70.1%

SCR

DSAC* 15h 28MB 23.0% 33.9% 26.0% 67.1% 10.6% 50.2% 35.1%
EGFS 21min 4.5MB 46.4% 60.6% 56.4% 78.7% 22.8% 71.6% 56.1%
EGFS (dual) 21min 9MB 58.5% 59.1% 67.0% 76.1% 30.6% 75.9% 61.2%

GLACE 11min 9MB 31.1% 44.8% 37.3% 72.2% 19.4% 60.1% 44.2% ± 1.8%
GLACE-Diff 15min 9MB 35.7% 46.5% 41.5% 69.0% 22.8% 62.7% 46.4% ± 1.9%

ACE 5min 4MB 24.5% 35.1% 34.4% 58.9% 15.7% 48.4% 36.2% ± 1.5%
ACE-Diff 8min 4MB 26.9% 35.3% 37.2% 58.5% 16.6% 50.3% 37.5% ± 1.8%

GLACE (50K) 33min 9MB 64.1% 68.5% 73.1% 84.8% 41.2% 85.2% 69.5% ± 1.4%
GLACE-Diff (50K) 40min 9MB 65.1% 67.4% 73.0% 84.2% 41.8% 85.9% 69.6% ± 2.0%

ACE (50K) 10min 4MB 47.9% 55.0% 60.5% 77.3% 26.4% 75.9% 57.2% ± 1.6%
ACE-Diff (50K) 13min 4MB 47.9% 56.0% 62.0% 76.5% 27.1% 77.7% 57.9% ± 1.1%

GLACE (dual) 22min 18MB 51.1% 56.8% 60.9% 75.9% 30.5% 75.6% 58.5% ± 1.9%
GLACE-Diff (dual) 30min 18MB 51.6% 58.2% 61.9% 76.7% 28.2% 76.5% 58.9% ± 1.7%

ACE (dual) 10min 8MB 41.4% 46.0% 54.4% 65.8% 20.5% 63.1% 48.5% ± 1.9%
ACE-Diff (dual) 16min 8MB 43.2% 48.7% 55.0% 66.1% 21.8% 64.4% 49.9% ± 1.8%

Table 3. Depth Evaluation on 7Scenes [22]. We report the errors between the estimated depth images, derived from the 3D scene points
generated by SCR, against the ground truth depth images for each method.

Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑
ACE [4] 0.48 24.25 2.26 0.33 0.87 0.93 0.96
ACE+Laplace NLL (Ours) 0.34 1.34 1.65 0.33 0.88 0.94 0.97
ACE+Laplace WD (Ours) 0.35 1.43 1.66 0.32 0.88 0.94 0.97
ACE+Diffusion (Ours) 0.32 1.17 1.62 0.32 0.88 0.95 0.97
GLACE [23] 0.40 25.57 2.36 0.25 0.89 0.95 0.97
GLACE+Diffusion (Ours) 0.28 0.96 1.60 0.23 0.90 0.96 0.98

To generate per-frame depth maps we compute the scene
coordinates for each mapping view, transform them into
camera space, and derive the estimated depth from the z-
coordinates. The average errors between these depth esti-
mates and the ground truth across all scenes in 7Scenes are
presented in Tab. 3. The results demonstrate that all our
priors significantly reduce the depth error compared to the
baseline approaches for both ACE and GLACE. In particu-
lar, the number of outlier points decreases as signified in the
drastic reduction of the Sq Rel metric.

2.3. Analysis
Point Cloud Encoder Architecture We compare the
PVCNN architecture [14] with the Pointwise-Net used
in [16]. Pointwise-Net processes each point independently,
limiting its ability to capture structural relationships. As
shown in Tab. 4 and Fig. 2, PVCNN outperforms Pointwise-
Net in both relocalization and reconstruction, showing the
advantage when incorporating structural information.

Mask Threshold As described in the main paper, dur-
ing SCR mapping, diffusion regularization is applied only

to points with a reprojection error greater than 30 pixels.
Tab. 5 compares the relocalization accuracy when regular-
ization is applied to all points (κ = 0) and only to points
with reprojection errors above 60 pixels (κ = 60). In the
latter scenario, regularization affects fewer points, result-
ing in performance that closely resembles the original ACE.
While applying diffusion to all points also improves upon
the baseline ACE, the results indicate that κ = 30 achieves
the best accuracy.

Frame Sample Rate Fig. 3 shows the impact of sub-
sampling the number of mapping images in 7Scenes. Our
diffusion prior mitigates the effect of scarce data.

Efficiency The diffusion regularization adds extra com-
putation time to each ACE mapping iteration. To balance
efficiency and accuracy, we reduce the frequency of apply-
ing the diffusion regularization by only implementing it ev-
ery k mapping iterations. As shown in Tab. 6, setting k = 4
(i.e. running one diffusion iteration every 4 mapping steps)
achieves the optimal trade-off, adding approximately 3 min-
utes to the total ACE mapping time.



Table 4. Ablation Study of the Diffusion Model Architecture. We compare the relocalization accuracy (5cm, 5◦) and depth errors on
7Scenes with different architectures of the diffusion point cloud encoder.

Reloc Acc ↑ RMSE ↓ RMSE log ↓ δ1 ↑

PVCNN [15] 97.7% 1.62 0.32 0.883
Pointwise-Net [16] 97.5% 1.64 0.69 0.879

Table 5. Mask Threshold for Diffusion. We compare the relocalization accuracy (5cm, 5◦) on 7Scenes with different mask thresholds κ
for applying diffusion regularization.

Chess Fire Heads Office Pumpkin Redkitchen Stairs Avg

ACE 100.0% 99.5% 99.7% 100.0% 99.9% 98.6% 81.9% 97.1%

κ = 0 100.0% 99.4% 100.0% 99.8% 99.3% 98.4% 85.4% 97.5%
κ = 30 100.0% 99.5% 100.0% 100.0% 99.0% 99.1% 86.2% 97.7%
κ = 60 100.0% 99.6% 99.9% 99.8% 99.0% 98.3% 80.8% 96.8%
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Figure 2. Qualitative Results with Different Architectures for
Point Cloud Encoder. We compare the point clouds obtained
after SCR mapping using diffusion regularization with different
point cloud encoders. Pointwise-Net encodes every point inde-
pendently whereas PCVNN captures structural information.

Table 6. Efficiency-Accuracy Analysis for Regularization. We
analyze how the frequency of applying diffusion during mapping
impacts both relocalization accuracy (5cm, 5◦) and mapping time.

k
7Scenes Indoor6 (N=51200)

Reloc Acc ↑ Time Reloc Acc ↑ Time
1 97.7% 18min 57.5% 24min
2 97.7% 11min 57.5% 17min
4 97.7% 8min 57.9% 13min
8 97.6% 6min 57.2% 12min

2.4. Outdoor Scenes

Our priors were designed for indoor scenes. Outdoor scenes
pose significant additional challenges. For example, the dis-

Figure 3. Mapping Sample Rate vs. Accuracy on 7Scenes. Sub-
sampling the mapping frames leads to a decrease in relocalization
performance, but ACE with our diffusion prior (ACE-Diff ) consis-
tently outperforms ACE.

tribution of depth for outdoor scenes can be more complex,
multi-modal and vary tremendously from scene to scene.
Generative modeling of outdoor scenes requires more ex-
pressive architectures that are in turn computationally more
demanding, and would slow down ACE mapping. Outdoor
environments come with a significant level of diversity, and
require large datasets to learn priors that generalize.

Still, we show some promising results on outdoor scenes
using our indoor priors. We evaluate ACE with and with-
out our priors on the Cambridge Landmarks dataset [11],
which consists of outdoor scenes of varying extent span-
ning a small shop facade to an entire university court. As
shown in Tab. 7, our priors can lead to small improvements.
For the depth distribution prior, we use a Laplace distribu-
tion with with a mean of 25m and a bandwidth of 10m. For
the diffusion prior, we employ the same model used in our
other experiments, which is trained on indoor ScanNet data.
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Figure 4. Qualitative Results on Indoor6. Point clouds extracted
from the ACE (top) and ACE+Diffusion (bottom) networks.

For the RGB-D prior, we set a bandwidth of 0.5m, and use
MVS depth maps for mapping published by [1].

GC KC OH SF StMC Mean

RGB

ACE 41.7 27.0 30.0 5.4 20.4 24.9
ACE + Laplace NLL 39.6 28.3 28.0 5.3 21.6 24.5
ACE + Laplace WD 50.1 26.2 32.1 6.0 20.1 26.9
ACE + Indoor Diff. 45.6 27.9 28.5 5.2 20.8 25.6

RGB-D ACE + Laplace NLL 49.3 22.9 24.2 5.7 15.4 23.5

Table 7. Outdoor Scenes. Median position error (cm) on Cam-
bridge Landmarks. Scene names abbreviated by first letters.

2.5. More Qualitative Result
We present a qualitative comparison between ACE and ACE
enhanced with the diffusion prior in Fig. 4, where the ef-
fectiveness of the diffusion prior is evident, particularly in
reducing noise.
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