Identity Preserving 3D Head Stylization with Multiview Score Distillation

Supplementary Material

A. LD objective

This section will go through the detailed derivation.
Recall the DDPM forward process:

Vaizg + V1 —agn = xy,

Assume that distribution (q) of the 3D representation ()
conditioned on generation prompt (y) is proportional to the
prompt-conditioned distribution (p) of independent 2D ren-
ders (z}) on different poses (). In our setup, 6 is the style-
based 3D GAN layers.

n ~ N(0,1) (D)
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We optimize negative log-likelihood of Eq. (2) to find 6:
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Define the loss Ly p as the average of infinitely many N
render poses and find gradient Vg to update 6 via gradient
descent, where 7 is any given pose:
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Lip = N ngréo log q(ly) = (4)

VoLip = —E-{Velogp(z{ly)}

Using Egs. (1) and (4) and change of variables in proba-
bility:
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Take the log of both sides, the partial derivative with re-
spect to xj, and decompose the right-hand side with chain
rule using the relation in Eq. (1):
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Extend the partial gradient chain in Eq. (6) to 6 from z:

Oxf Oxf
Valogp@lly) g2 D
0

Vo logp(zgly) =

where V, log p(27 |y) is the score function estimation.
Plugging Eq. (7) into Eq. (4) yields the update direction:
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gj} is /@y from Eq. (1). Notice that to update 6,
we do not need to back-propagate through denoising UNet
and can acknowledge the UNet output as a part of the gradi-
ent. Algorithm 1 describes the domain adaptation procedure

with PyTorch nomenclature:

where

Algorithm 1 LD with mirror and grid grads

Require: Generator Gy, neural renderer R, super-resolver SR, depth ex-
tractor D, depth and text-conditioned denoising UNet SD, generator
mapping truncation parameter 1), extrinsic triplane render matrix ,
mirror pose 7/, vertical flip operator M, rank weighing matrix W

1: foriin {0,1,..., N} do

2: wt (— sample latent (¢)=0.8)

3 7, ! < sample_pose () >Ex

4: mg,zg/ +— SR(R(Gy(z),m, "))

5: n,t < noise_scheduler (0.70,0.96)

6: zT — Vapal + V1 —amn >Eq,

7 with no_grad() :

8: Ve, log p(ef |y) /T = & “
SD(xt Y5 by D(:CO ))

9:  grad < Va, logp(a]|y)vor

10: UxzVvT « SVD (grad)

11:  grad+ UWXVT > rank weighing

12: z{ .backward (grad) >VoLiDp
13: :cg/ .backward (M (grad)) > mirror gradients
14: optimizer.step ()

15: end for

16: for ¢ in {0, 1, ..., N} do
17: wt «— sample_latent (¢=0.8)

18: {n} = 70, 7w, 72,73 « sample pose() b E{ry
19: {zT }Lr + make_grid (R(Ge(w™), {7}))

20: {zF} + make_grid (SR(R(Gg(wT),{r})))

21: n,t < noise_scheduler (0.30,0.80)

22: {xf}(—\/ocft{xg}—i-\/l—o?tn D]E{zt}

23: with no_grad() :

24: V{zt}logp({zzrﬂy)/\/l — ay “—
SD({z} y,t, D{zF}))

25:  grad < Vg, logp({z] }|y)var

26: UXVT « SVD (grad)

27:  grad + UWXVT > rank weighing

28: {zJ }Lr -backward (grad) > grid gradients VoLip,

29: optimizer.step ()

30: end for

31: return Gy

sample_latent utilizes the mapping network of the



generator and maps z to w™, later to be fed to the gener-
ator. make_grid creates a 2x2 grid with 4 inputs. M
is realized with torch.flip(x,dims=[-1]). with
no_grad () disables PyTorch’s gradient calculation. Note
that each time x is generated, we implicitly pass it through
VAE to embed it into SD’s latent space.

B. Implementation details

Baselines. We train the latent mapper in StyleCLIP [40]
with PanoHead’s [4] generator. For StyleGAN-NADA [14]
and StyleGANFusion [50], we use [50]’s official repository
and modify the generator backbone to PanoHead. For [50],
we utilize their EG3D config parameters for PanoHead, and
implement the adaptive layer selection for [14]. For Diffu-
sionGAN3D [29], we implement the method based on the
official paper since there is no published codebase. For our
baseline, we utilize our implementation of [29] with their
distance loss for domain adaptation and build upon it with
our proposed improvements. We stay faithful to each base-
line’s original hyperparameters (denoiser checkpoint selec-
tion, noise scheduler, learning rate, optimizer, etc.) unless
the training diverges.

Our training parameters. We train the genera-
tor with synthetic z1x512 ~ AN(0,I) data for 10k it-
erations with batch size 1, where the truncation pa-
rameter of the generator’s mapping network is ¢ =
0.8.  We use Adam optimizer with a le™* learning
rate. We optimize the G.backbone.synthesis and
G.backbone.superresolution sub-networks of the
generator G and freeze all convolutional layer biases, using
the same configuration as [50]. The classifier-free-guidance
(CFG) [20] weight and depth-conditioned ControlNet [63]"
guidance weight are set to 7.5 and 1.0, respectively. Depth
ground truths are extracted from [56] since the neural ren-
derer’s depth estimations are low-resolution and require ad-
ditional clipping (64 x 64).

As the conditional denoiser for our method and the abla-
tion study for showing the improvements upon [29], we em-
ploy RV v5.12. For qualitative and quantitative comparison
among other methods, we employ the methods’ suggested
diffusion checkpoints in their papers and repositories®*.

For mirror and grid denoising, noise start timestep
t is uniformly selected among (0.70,0.96) and

(0.30,0.80), respectively, where ¢ is from 0 — 1. We
use DDIMScheduler for the noise scheduler. The num-
ber of inference steps in the diffusion pipeline is always 1
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Figure 1. From left to right: Ours (distribution #2), ground truth
unedited image (distribution #3), edited image with full-step dif-
fusion pipeline (distribution #1).

since we perform score distillation.

Quantitative scores. We construct ground-truth edited
image distributions using the Stable Diffusion pipeline. For
the first distribution, we take images, add noise with ¢ = 25,
and denoise with the style prompt using each baseline’s dif-
fusion checkpoints for 50 steps, resulting in edited images.
The second distribution consists of the same images styl-
ized using domain-adapted generators. These two distribu-
tions are used to compute FID, and individual image pairs
between them are used to compute CLIP similarity scores.
We generate a third distribution using unedited images to
evaluate identity preservation (ID) and AD. Scores for ID
and AD are then calculated between using image pairs from
the second and third distributions. Fig. 1 visualizes sample
images in those three distributions.

Prompts. We use empty strings for negative prompts for
our method. For positive prompts, we use the following list
for all methods:

e Portrait a person in Pixar style,
cute, big eyes, Disney, sharp, 8K,

skin detail, best quality, realistic

lighting, good-looking, uniform light,

extremely detailed

e Portrait of a Greek statue, closeup,
elegant and timeless, intricate
and detailed carving, smooth marble
texture, ancient Greek aesthetics

* A portrait of Joker from the movie The
Dark Knight

* Charcoal pencil sketch of human face,
lower third, high contrast, black and
white

¢ Portrait of a werewolf

¢ Portrait of a zombie

Rank weighing on score tensors. Fig. 2 illustrates how
an SVD-based approach can decompose a stylized portrait
into coarse and fine components, and then reconstruct it at
different “rank” levels (k). This progressive refinement un-
derlines how SVD can serve as a powerful control mecha-
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Figure 2. Demonstration of our SVD-based stylization across mul-
tiple face styles. The Input column shows the original images. -
weighted uses all top singular values with decreasing weights, pre-
serving both coarse and fine features. Columns k=1 through k=4
depict rank-k approximations; as k increases, more high-frequency
details are retained, resulting in sharper, more faithful stylizations.
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Figure 3. Percentage of user preferences. Users overwhelmingly
favor ours compared to other domain adaptation methods.

nism for score distillation, letting the user dial in how many
spatial “frequencies” of the style are included.

C. User study

We conduct a user study with 25 participants to evalu-
ate the quality of 3D stylization and identity preservation
across different methods. Participants are shown images
generated by five different models: StyleCLIP, StyleGAN-
NADA, StyleGANFusion, DiffusionGAN3D, and our own
approach. For each image, they are asked to select which

output best balances stylization and identity preservation.
The methods are presented in random order for each im-
age to minimize bias. Results of this user study are shown
in Fig. 3. The data indicate our method is consistently pre-
ferred across all the prompts tested, with participants over-
whelmingly selecting it as the best for both stylization and
identity preservation compared to others.

D. Additional results

Pixar  Joker ~Werewolf Sketch Statue
InstructPix2Pix | 0.1461 0.1164  0.1427 |10.0790 1 0:0900"
InstantID | 0.0897 0.1185  0.1055  0.1218 0.1290
StyleCLIP | 0.1045 [0:09587 0.1962 ~ 0.0878 0.1658
StyleGAN-NADA [10:04597 0.1380 0.2617  0.0890 0.1480
Q| StyleGANFusion | 0.1668 0.1904  0.1387  0.1168 = 0.1212
DiffusionGAN3D | 0.1566 | 0.0977 [10:0922° | 0.1216 0.2442

Ours | 00326 00713 00856 00742 01122

Table 1. KID scores on the test set.

2D

Tab. 1 reveals the KID scores on the same test set used
in the main paper. Our method outperforms all baselines
in KID across domains, with the exception of the Statue
domain. Notably, in the Sketch stylization setting, while
InstructPix2Pix reports a slightly better FID, our method
achieves superior KID scores.

Figs. 4 to 9 visualizes the outputs of methods for differ-
ent prompts in 360-degrees.
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Figure 4. Joker edits. From top to bottom: input, StyleCLIP, StyleGAN-NADA, StyleGANFusion, DiffusionGAN3D, ours.
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Figure 5. Pixar edits. From top to bottom: input, StyleCLIP, StyleGAN-NADA, StyleGANFusion, DiffusionGAN3D, ours.
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Figure 7. Werewolf edits. From top to bottom: input,



)

| s 2k Aol At Bhnts A

ik
Iir

DD DD D
ealialal ol

2
> 2
B 2

Figure 8. Zombie edits. From top to bottom: input, StyleCLIP, StyleGAN-NADA, StyleGANFusion, DiffusionGAN3D, ours.
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Figure 9. Statue edits. From top to bottom: input, StyleCLIP, StyleGAN-NADA, StyleGANFusion, DiffusionGAN3D, ours.
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