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Supplementary Material

A. Linear MAEs: Characterizing critical

points

We present additional details for Theorem 1 below.
Consider the loss.

ω = ||X → (1→m)XAB||2 +m(1→m)||GAB||2, (12)

We first set εω/εA to 0 to get

→ 2(1→m)X→XB→ + 2(1→m)2X→XABB→+

2m(1→m)Blkdiag
p
(X→X)ABB→ = 0. (13)

Any critical point must satisfy

A↑ = V ↓1X→XB→(BB→)↓1 (14)

where V = (1 → m)X→X + mBlkdiag
p
(X→X). Substi-

tuting this value of A↑ back into the loss, we get

ω =Tr(X→X)→
(1→m) Tr[B(X→XV ↓1X→X)B→(BB→)↓1]

Let C = X→XV ↓1X→X and D = I . Note that C and
D are both symmetric and D is invertible. Using lemma 3,
the expression is minimized by the k largest eigenvalues of
the generalized eigenvalue problem defined on (C,D). Fur-
thermore, every critical point is a subset of k eigenvectors
(from Lemma 2).

B. Non-linear MAEs using linear approxima-

tions

Non-linear masked autoencoders under a Taylor series

approximation. Consider a nonlinear autoencoder f and
the corresponding masked autoencoder loss

ωm = ER||X → f(R↑X)||2.

Let Xµ = (1 →m)X and Xr = R ↑X . Under the Taylor
series approximation around 0

f(XR) ↓ f(0) +XR↔f(0)→ = XR↔f(0)→,

the MAE loss reduces to

ωm = ||X → (1→m)X↔f(0)→||2 +m(1→m)||G↔f(0)→||2

Note that this approximation holds for small perturbations
to the input, and is less likely to hold for large perturbations,
i.e., the approximation is only valid for small masking ratio.

We will consider another approximation, but this time
calculate the loss for a single sample. We consider a first-
order approximation of f for a single sample.

f(xR) ↓ f(xµ) +↔f(xµ)(xR → xµ),

which when substituted into the above loss gives us

ωm(x) =||x→ f(xµ)||2

+m(1→m) Tr
(
FxBlkdiag(x

→x)
)

Note that this is the loss for a single sample and Fx is the
Fisher information matrix for data point x.

Masked autoencoders: A function space perspective

Let us assume that we have access to the true input im-
age signal x(i, j), where i, j ↗ [0, 1], as opposed to a dis-
cretized version of it. The masked autoencoder objective
can be posed as an optimization problem over functionals
f ↗ F , i.e.,

ωm =

∫
||f(r ↑ x)→ x||2 dr,

where r is a mask applied to the image. Assuming that f is
linear, then the above objective reduces to

ωm = ||x→ f(µ)||2 → ||f(µ)||2 +
∫

||f(r ↑ x)||2 dr,

where µ =
∫
(r↑ x) dr. In the linear case, the MAE forces

f to reconstruct the mean masked image, while minimizing
the variance of the predictions made on the masked images.

C. Supporting lemmas

Lemma 1 The loss of the masked autoencoder is

ωm = ||X → (1→m)XAB||2 +m(1→m)||GAB||2

Proof 1 Expanding the term inside the expectation, we get

ER||X→(R↑X)AB||2

= ERTr [X→X → 2X→(R↑X)AB

+B→A→(R↑X)→(R↑X)AB].

We note that E[R↑X] = (1→m)X and

E[(R↑X)→(R↑X)] =
{
(1→m)X→

i
Xj Xi, Xj in the same patch

(1→m)2X→
i
Xj Xi, Xj not in the same patch.

= (1→m)2X→X +m(1→m)Blkdiag
p
(X→X).



Substituting back into the masked autoencoder loss, we get

ER||X → (R↑X)AB||2

= Tr [X→X → 2(1→m)X→XAB + (1→m)2X→X

+m(1→m)B→A→Blkdiag
p
(X→X)AB]

= ||X → (1→m)XAB||2 +m(1→m)||GAB||2

where G→G = Blkdiag
p
(X→X).

Lemma 2 For matrices C ↗ Rd↔d, X ↗ Rd↔k and an
invertible matrix D ↗ Rd↔d, every critical point of

L(X) = Tr[(X→DX)↓1X→CX]

that is full-rank can be expressed as UQ, where Q is an
invertible matrix and U is any subset of k eigenvectors of
the generalized eigenvalue problem for (C,D).

Proof 2 Taking the derivative of L(X) with respect to X
and setting it to 0, we get

2DX(X→DX)↓1X→CX = 2CX.

Let (!D,”D) be the eigenvectors and eigenvalues of
D. Let (!C̄ ,”C̄), be the eigenvectors and eigenval-
ues !↓1/2

D
”→

D
C”D!↓1/2

D
. In addition, we define ” =

”C̄!
↓1/2
D

”D̄ and X̃ = ”X . We choose this definition of
”, since it diagonalizes both C and D.

2DX(X→DX)↓1X→CX = 2CX

=↘ D”→X̃(X̃→”D”→X̃)↓1X̃→”C”→X̃ = C”→X̃

=↘ D”→X̃(X̃→X̃)↓1X̃→!
C̃
X̃ = C”→X̃

=↘ ”D”→X̃(X̃→X̃)↓1X̃→!
C̃
X̃ = ”C”→X̃

=↘ X̃(X̃→X̃)↓1X̃→!
C̃
X̃ = !

C̃
X̃

=↘ P
X̃
!
C̃
X̃ = !

C̃
P
X̃
X̃

where P
X̃

is the projection operator. Note that P
X̃
X̃ = X̃ .

Since !C̄ is diagonal, P
X̃

must also be diagonal in order for
the matrices to commute. Furthermore, P

X̃
has exactly k

eigenvalues equal to 1 and the rest set to 0, since X has rank
k. Hence, X̃ must be of the form ISkQ where Sk selects
a subset of k dimensions and Q ↗ Rk↔k is an invertible
matrix. Hence X = ”SkQ where ”Sk is a subset of k
eigenvectors of the generalized eigenvalue problem.

Lemma 3 For matrices C ↗ Rd↔d, X ↗ Rd↔k and an
invertible matrix D ↗ Rd↔d, the global maximum of

L(X) = Tr[(X→DX)↓1X→CX]

is
∑

k

i=1 !k where ! are the eigenvalues of the generalized
eigenvalue problem (C,D).

Proof 3 From lemma 2, we know that any critical point is
of the form ”SkQ. Subtituting this into L(X), we get

L(X) = Tr[(X→DX)↓1X→CX]

= Tr[(Q→Q)↓1Q→”→
Sk
C”SkQ]

= Tr[”→
Sk
C”Sk ] =

∑

i↗Sk

!i.

The loss is maximized by the largest k eigenvalues and min-
imized by the smallest k eigenvalues.

Lemma 4 Under the Taylor series approximation of
f(XR) ↓ f(0) + XR↔f(0)→ = XR↔f(0)→, the MAE
loss for a non-linear function f is

ωm = ||X→(1→m)X↔f(0)→||2+m(1→m)||G↔f(0)→||2.

Proof 4

ωm = ER||X →XR↔f(0)→||2

= ||X||2 + ER||XR↔f(0)→||2 → 2ER Tr(X→XR↔f(0)→)

= Tr(X→X) + (1→m)2 Tr
(
↔f(0)X→X↔f(0)→

)

+m(1→m) Tr
(
↔f(0)Blkdiag(X→X)↔f(0)→

)

→ 2(1→m)ER

[
X→X↔f(0)→

]

= ||X → (1→m)X↔f(0)→||2 +m(1→m)||G↔f(0)→||2.

Lemma 5 Under the Taylor series approximation of
f(xR) ↓ f(xµ) + ↔f(xµ)(xR → xµ), the MAE loss, re-
duces to

ωm(x) = ||x→f(xµ)||2+m(1→m) Tr
(
FxBlkdiag(x

→x)
)
.

Proof 5

ωm(x) = ||x→ f(xµ)→↔f(xµ)(xR → xµ)||2

= ||x→ f(xµ)||2 + ER||↔f(xµ)(xR → xµ)||2

+ 2ER(x→ f(xµ))
→(↔f(xµ)(xR → xµ))

= ||x→ f(xµ)||2+
ER(xR → xµ)

→↔f(xµ)
→↔f(xµ)(xR → xµ)

= ||x→ f(xµ)||2+
ER Tr

(
↔f(xµ)

→↔f(xµ)(xR → xµ)(xR → xµ)
→)

= ||x→ f(xµ)||2 +m(1→m) Tr
(
FxBlkdiag(x

→x)
)
.

Lemma 6 The masked autoencoder loss, for a input image
x and linear functional f is

ωm = ||x→ f(µ)||2 → ||f(µ)||2 +
∫

||f(r ↑ x)||2 dr,

where µ =
∫
(r ↑ x) dr
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Figure 13. Analogous to Figs. 5, 6, 8, 9, but for the ImageNet-64
dataset. A) Visualization of the Jacobian (m = 0.8) for nonlinear
MAE. B) Jacobian across different stages of training for a specific
output pixel (ps = 8, m = 0.8) for nonlinear MAE. C) Normal-
ized weight for different hyper-parameters of a linear MAE, AE
and DAE.

Proof 6

ωm =

∫
||x→ f(r ↑ x)||2 dr

=

∫
||x→ f(µ)→ (f(r ↑ x)→ f(µ))||2 dr

=

∫
||f(µ)→ x||2 + ||f(r ↑ x)→ f(µ)||2 dr

→
∫

2≃x→ f(µ), f(r ↑ x)→ f(µ)⇐dr

=

∫
||f(µ)→ x||2 + ||f(r ↑ x)→ f(µ)||2 dr

= ||x→ f(µ)||2 → ||f(µ)||2 +
∫

||f(r ↑ x)||2 dr.

D. Additional experiments

Additional details about MAE pretraining We train
MAEs using the architecture in He et al. [20]. We divide the
image into patches of size p and randomly mask a fraction
m of the patches before feeding it to the MAE. The encoder
projects the unmasked patches to a d-dimensional embed-
ding using a linear layer. The sequence of patches are then
fed to a series of Transformer blocks. The decoder adds
a learnable vector and position encoding for every masked

patch and reconstructs the masked patches.

Figure 14. We vary the number of encoder and decoder layers and
record the reconstruction loss at the end of training and the time
required to train the MAEs. Note that MAEs are slow to train

with training time growing faster the the size of the decoder. The
reconstruction loss becomes smaller with increasing size of both
the decoder and the encoder. However, we find that the training

loss is not a good proxy for downstream task performance.

Number of Encoder and decoder layers We train MAEs
on CIFAR10 for different encoder and decoder sizes. We
find that the reconstruction loss decreases with increasing
size of both the encoder and the decoder (Fig. 14). How-
ever, the training time grows faster than the size of the de-
coder, making it computationally expensive to train large
decoders. We also find that training loss is not a good proxy
for downstream task performance. We evaluate the perfor-
mance of the trained encoder using linear probing and find
that the accuracy improves as we increase the size of the
encoder. However, the optimal decoder size is 2-4 layers
(Fig. 15).

If the model are trained only using the supervised loss,
i.e., we do no MAE pretraining, then the accuracy on CI-
FAR plateaus around 83-84%. In fact the accuracy for a
20-layer network is worse than the accuracy for a 12-layer



network which differs from the trend for masked autoen-
coders.

Figure 15. We vary the number of encoder and decoder layers
(transformer blocks) and plot the linear probe accuracy (left) and
the accuracy after fine-tuning for 100 epochs. The accuracy of the

trained encoder continues to improve as we increase its size.
Linear probe accuracies are usually indicative of performance after
fine-tuning.

Figure 16. We vary the masking ratio and patch-size of the masked
autoencoder. While larger masking ratio lead to smaller training
times, even smaller masking ratios work quite well. Smaller patch-
sizes are a lot slower to train but usually perform better than larger
patch-sizes.

Figure 17. We plot the linear probe (Left) and accuracy after fine-
tuning (right) for different patch-size and masking ratio. Patch-
sizes of 2 and 4

Patch-size vs. Masking ratio The masking ratio and
patch-size control the basis learned by the MAE. We sur-
prisingly find that many different parameters work surpris-
ingly well for downstream task accuracy. We also note that
reconstruction loss is not indicative of downstream task per-
formance.

Are long training times even necessary? MAEs are typ-
ically trained for a large number of epochs and the re-
construction error continues to decrease over the course
of training. However, the reconstruction error is not pre-
dictive of both the linear-probe and fine-tuning accuracies.
In Fig. 10, we consider multiple checkpoints over the course
of pretraining and plot the number of pretraining epochs
against the linear probe accuracy of that checkpoint. We
find that the linear probe accuracy continues to increase

even after 1500 epochs of training particularly for larger
models, justifying the need to pretrain for a large number of
epochs (see Fig. 15).

Figure 18. We plot the linear probe accuracies of different masked
autoencoders over the course of training. They accuracy continue
to increase even after 1000 epochs of training, justifying the need
for long training times. Larger models tend to require longer train-
ing times.

Centered kernel alignment or CKA [30] measures the
similarity between representations of two different net-



Figure 19. CKA between MAEs trained with different number of
encoder layers. Each row and column corresponds to the similar-
ity between a k-layer encoder and the 12-layer encoder (hence 12
columns). The darker shades indicate that the representations for
those two layers are not similar.

works. We use CKA to measure the similarity between the
representations of MAEs trained with different number of
encoder layers and with 4 decoder layers. White indicates
that the similarity is high and black/red indicates that the
similarity is low. We find that the larger networks are more
similar to the 12-layer encoder while while the smaller net-
works are less similar to the 12-layer network, particularly
at the last layer.

E. More experiments with the Ising model

Figure 20. We plot the weight matrix AB and the encoder ma-
trix A for (left) patch-size 16 and masking ratio of 0.5 and (right)

patch-size 8 and masking ratio 0.5. Increasing the patch-size while
keeping the masking ratio fixed biases the encoder towards fea-
tures that capture long-range correlations.

Figure 21. We plot the weight matrix AB and the encoder matrix
A for (left) patch-size 16 and masking ratio of 0.99 and (right)

patch-size 8 and masking ratio (0.01). Reducing the masking ra-
tio biases the encoder towards features based on local correlations
while increasing the masking ratio prioritizes features that capture
long range correlations.

F. MAEs in the Frequency Domain

Figure 22. Masking using square patches in a MAE zeros out fre-
quencies in a grating-like pattern in Fourier space (color bar in
image log power spectral density used for all plots, but mask).

MAEs mask a part of the input image (20% of the patches),
usually multiple square patches, and train an encoder-
decoder pair to reconstruct the intensity at the masked
patches. Fig. 22 (top) shows the power spectral density
(PSD), i.e., squared amplitude at different spatial frequen-
cies, of the original image (left), the mask itself (top,
middle) and masked images using different patch sizes.
The Discrete Fourier Transform (DFT) magnitude of these
masks is a sinc function modulated by a sum of complex
exponentials Eq. (21). This can be shown in a 1D setting
by considering a discrete signal x ↗ RD. For MAEs with
patch size p, we parameterize each individual mask using a
rectangular pulse defined by function r as

r[n] = u[n]→ u[n→ p], (15)



where p is the patch size, n is the discrete time index and
u[n] is the Heaviside step function. A MAE mask m ↗ RD

is constructed as a sum of such rectangular pulses:

m[n] =
N∑

i=1

r[n→ ai], (16)

where ai denotes the starting index of the ith mask. The
masked signal is then given by elementwise multiplication
of the signal x and the mask m:

y[n] = x[n] ·m[n]. (17)

In the frequency domain, by the multiplication property
of the DFT, this becomes:

Y [k] =
1

D
X[k] ⇒M [k], (18)

where X[k] and M [k] are the DFTs of x[n] and m[n],
respectively and k ↗ [0, 1, ..., N→1] is the frequency index.

Using the time-shift and linearity properties of the DFT,
the transform of the mask m[n] can be written as:

M [k] =
N∑

i=1

e↓j2ωkai ·R[k], (19)

where the DFT of r[n] is given by:

R[k] = e↓jωk(p↓1)/D sin(ϑpk/D)

sin(ϑk/D)
. (20)

Hence, applying MAE-style masking results in a spectral
smoothing effect analogous to sinc filtering, as illustrated in
Fig. 22.

|R[k]| =
∣∣∣∣
sin(ϑpk/D)

sin(ϑk/D)

∣∣∣∣

∣∣∣∣∣

N∑

i=1

e↓j2ωkai

∣∣∣∣∣ . (21)

A square patch therefore corresponds to masking fre-
quencies in a grating-like pattern. Masking in an MAE
therefore corresponds to zeroing out certain frequencies.
The goal of an MAE is to interpolate the value of the
masked frequencies from the unmasked version of the spec-
trum.

G. Related work

Masked Autoencoders. The goal of visual representation
learning is to develop representations that go beyond the
identity function [44] and instead are predictive of down-
stream visual tasks. Early methods in this field sought to
prevent trivial identity mappings by incorporating various
noise distributions, such as blankout noise in Dropout [43]
or Marginalized Autoencoders [9], and Gaussian noise in
Denoising Autoencoders [47]. A key limitation of these

earlier approaches is that they were developed before deep
networks could be easily trained end-to-end, resulting in
reliance on greedy layer-wise training, which does not
generalize as well as full end-to-end optimization. Modern
methods, such as Data2Vec [2] and BERT [12], overcome
this limitation by training Vision Transformers (ViTs)
end-to-end using blackout noise, achieving state-of-the-art
representation performance. The core innovation of modern
MAEs [20, 54] lies in their architectural design, which
encodes only masked image patches, significantly reducing
computational costs for masked prediction strategies.
Recent advancements in MAEs include cross-attention
mechanisms for efficient computation [18], frequency-
based loss functions to mitigate oversmoothing [33, 52],
and intermediate perception reconstruction instead of direct
output reconstruction [42, 50]. Additional innovations
involve task-guided masking strategies [15, 31, 53],
distillation-based training [3], and numerous other tech-
niques [22].


