Semi-supervised Deep Transfer for Regression without Domain Alignment

Supplementary Material

A. Derivations
A.1. CRAFT: A MAP Estimation View

In this section, we show that the proposed method can be
viewed as regularized training of neural networks. In par-
ticular, we show that optimization of the CRAFT objec-
tive gives us the maximum a posteriori (MAP) estimate
of model parameters. We know the MAP estimate for the
parameters 6 (given dataset D) is obtained by maximizing
the posterior log p(6|D)  log p(D|0) + log p(6), where,
log p(D|0) is the log-likelihood, and p(@) is the prior dis-
tribution (regularizer) over the model parameters. The sub-
sections below describe the choices for these components.

A.1.1. Likelihood

We define the log-likelihood for a labeled data as:
log p(D|6) = Zf\; log p(y;|x;,0). As this paper deals
with unlabeled data, as a design choice, we assume the
conditional distribution p(y|x,#) to be constant for unla-
beled training data, optimizing the log-likelihood over la-
beled data only.

Although we only address continuous label prediction
(regression — p(y|x,0) = N(y; f(x;6),c)) tasks in this
study, the framework can be converted to k-way discrete la-
bel prediction (classification) tasks by appropriate assump-
tions on the conditional distribution — e.g., p(y|x,0) =

Multy, (y; f1(x;0), ..., fr(x;0)).
A.1.2. The Prior Distribution

In this subsection, we derive a principled prior distribu-
tion that can leverage unlabeled data and/or deal with data
scarcity during transfer learning by biasing the selection of
parameters that best suit the domain. We achieve this by
extending the CUDA [4] framework, originally used for do-
main adaptation.

We note a few desirable properties for supervised trans-
fer learning algorithms. Firstly, these models are not ex-
plicitly trained to match the marginal label distribution, i.e.,
ply) # [ p(ylx,0)p(x)dx. Hence, the model’s perfor-
mance on unseen data can be compromised if the training
and the test label distributions differ, such as due to sam-
pling biases. Hence, p(y) = p(y|0) is a property we desire.
Secondly, ensuring this property can be particularly useful
if we know that the training dataset is small, where sam-
pling biases are likely. Hence, we define a joint distribution
using the trained model p(y|x, 0) to tackle these challenges:

)

q(x, yl0) = [p(mx,e) (y)]

SN plylxi,0)

Now, we incorporate ¢(x, y|6) as a prior over the model
parameters. We use the maximum entropy principle to
achieve this. In particular, we wish to maximize the entropy
of the model’s parameter distribution such that the nega-
tive log-probability of the joint distribution g, on average
is as small as a constant G, i.e., Egce[—log ¢(x,y|0)] =
G. Solving the Euler-Lagrange equations we get (see Ap-
pendix A.2):

log p(0) o alog q(x, y|6) ®)
where « is the Lagrange multiplier corresponding to G.

A.2. A Maximum Entropy Prior

The optimization objective described above can be ex-
pressed as:

0* = argmax — /p(@) log p(6)dé )
) 0

st Epeo|—log g(x,4]0)] = G, / p(0)d0 = 1
0

We ignore the constraint on the density integral, and nor-
malize it at the end. Hence, the Lagrangian can be written
as:

() = /9 p(6) (~log p(6) + a(log g(x, 410) + G)) db

9(0,p(9))

Using the Euler-Lagrangian equation, and because g
does not depend on the first derivate of p:

o~ a5 = —1—logp(0) +aflog q(x,yl0) + G) =0

= log p(#) = alog q(x,y|0) + (oG — 1)
Dropping the constant terms that are independent of 6:

p(0) o< alog q(x,y[0).

A.3. Mixtures of Gaussians and Exponentials

For learning the marginal distribution of labels for CRAFT
we fit a mixture of exponential and Gaussian distributions.
Given samples {xi}ﬁl from an unknown distribution p,.,
s.t., z; € Ry. If negative components exist, we can add a
constant offset to make the data non-negative. We model



the underlying distribution by %k; Gaussians and ks expo-
nentials. The density of a mixture model py, can be written
as;

k1+k2

po(z) = > po(2)ps(al2) (10)

i=1
where =z is the latent variable, s.t.,
Munk1+k2(z;ﬂlvﬂ27"'76k1+k2)-

po(z) =
The conditionals are

defined as:
, N(x;pi 0?) ie€{1,2,...k
(ol — i) = [N o) i€ (12 )
Exp(z; \;) 1€{k1+1,.... k1 +ko}
We estimate the parameters 0 =

{8 {0 Vit AN 2, 40}, using a cus-
tom designed expectation-maximization algorithm (code
available in Appendix E.2).

B. Datasets and Methods

B.1. Gaze prediction from brain signals

Preprocessing. All eye-tracking datasets — Visual Search
and Large Grid — were preprocessed similarly. Briefly,
blinks were removed using Gaussian filtering, and the tem-
poral locations of saccades were found by detecting very
high velocity and acceleration. Then, the eye-tracking data
was partitioned into 1s windows so that only one saccade
event occurred in that window. The displacement vector of
the eye was computed, and its magnitude (saccade ampli-
tude) was designated the target variable y € RT. Time-
matched to each saccade, a 500Hz EEG signal was ex-
tracted and used as the feature vector x € R128%500 (128
electrodes or channels). Table 5 lists the details of the train,
cross-validation, and test distributions for these datasets.
We followed the leave-participant-out evaluation strategy
with an identical train-validation-test split for the Large grid
dataset for direct comparison with the benchmark. The Vi-
sual Search paradigm has more training data and was used
to train the source model, which was transferred to the target
datasets - Large Grid (from the benchmark). Before train-
ing the model, the target variable (saccade amplitude) was
linearly scaled between [—1, 1], and the EEG data were z-
scored, by computing a common mean and standard devia-
tion, across time and channels.

Models. The EEG-EyeNet benchmark showed that Pyra-
midal CNNs [47] performed best at predicting saccade am-
plitude. However, naive 2D convolution-based neural net-
works treat the timechannel EEG data as an image, whereas
such data typically lack the correlation structure associated
with natural images. Moreover, CNN-based models are not
ideal for learning temporal autocorrelation structure present
in the data.

Table 5. Training, validation and test sets for each dataset. A
60-20-20% leave-participant-out split was used, as in the original
benchmark.

Validation  Test

21,191 5,018 5,354
12,275 2,836 2,719

Dataset Train

Visual Search (Source)
Large Grid (Target)

We address these shortcomings with a novel end-to-end
Long-Short-Term-Memory (LSTM) model trained on fea-
tures extracted by an EEGNet-like [31] architecture. Fig-
ure 2B shows the feature extractor, which employs separa-
ble convolutions along time and electrode dimensions. The
extracted temporal features are then fed to a series of two
LSTMs, which predict the saccade amplitude.

In the feature extractor, the EEG data is first convolved
along the temporal dimension using 100 ms trainable filters
independently for each electrode, as it is the average dura-
tion to execute a saccade [10]. The filters are shifted by
10 ms to capture neural dynamics up to ~100 Hz. Finally,
depthwise-separable convolution is performed time-point-
wise along the electrode dimension to obtain temporal fea-
tures for the LSTM-based decoder.

B.2. Brain age prediction from structural MRI
scans

Models. The Simple Fully Convolutional Network (SFCN,
Fig. 2D) [41] feature Extractor contains five blocks of 3D
Convolution (3x3x3 filters), Batch-Normalizaton, and 3D-
MaxPooling (2x2x2 filters), and ReLU activation, followed
by a single block of 3D Convolution with 1x1x1 filters,
Batch-Normalizaton, and ReLU activation. The outputs of
the feature extractor are then the Global Average Pooled
(GAP) and fed as input to a classifier. In the original paper,
the classifier predicted the probability of each MRI scan be-
longing to one of the 40 bins (range: 42-82 years). The
expected value of the outputs was reported as the predicted
age. In our version of SFCN, we avoid binning by replacing
the classifier with a regressor.

B.3. People counting from natural scene images

We addressed the challenge of counting people from pho-
tographs of crowds — the “people counting” challenge.
Preprocessing. High-resolution scene images from two
datasets — NWPU [48] and JHU-crowd [44] — were resized
to 1152x768. Following this, each image was divided into
six non-overlapping 384x384 patches. These patches were
fed to a ResNet-based feature extractor, to ultimately pre-
dict the number of people in the scene. The target dataset
(JHU-crowd) contains images with 0-10,000 people, and
thus, we restricted the training samples of the source dataset
(NWPU) to those that have less than 10k humans in each



image. Table 6 shows the train-test-validation split of the
datasets.

Table 6. Training, validation and test sets for each dataset. The
same train-test-validation split was used, as in the original bench-
mark.

Dataset Train Validation Test
NWPU (Source) 3,100 499 1,500
JHU-crowd (Target) 2,269 500 1,600

Models. Figure 4A shows the model used for people count-
ing. The patches from each image were passed through a
ResNet50 [25] model, pretrained on ImageNet [12], to get
six 2048-dimensional encoding vectors. These vectors were
then combined using an “attention” head to obtain a 64-
dimensional embedding for the image. This was then fed to
a dense layer to predict the number of people in the scene.

B.4. Tumor size estimation from histopathology im-
ages

We also addressed the challenge of estimating tumor sizes
from cancer histopathology images.

Preprocessing. We employed the Camelyon-16 [16] and
Camelyon-17 [6] high-resolution breast-cancer datasets.
The patch level annotations available in these datasets ren-
der them particularly suitable for our analysis. We used
256x256 high-resolution patches from the whole-slide im-
ages (WSIs) for our analysis. The annotations in these
patches were used to compute the fraction of the patch that
has tumerous tissue. This fraction was predicted as the
“tumor size” at the patch level. Table 7 shows the train-
validation-test split for the source and target datasets. To
render the transfer more challenging, we used only patches
containing 20-80% tumor in the image for training the
source model, while the target patches had tumor coverage
ranging between 0.1-99.9%.

Table 7. Training, validation and test sets for each dataset. A 64-
16-20% stratified split was used for both datasets.

Dataset Train Validation Test

Camelyon-16 (Source) 65,337 16,335 20,418
Camelyon-17 (Target) 7,926 1,982 2,477

Models. The 256x256 patch was passed through a
Resnet152v2 [24] model initialized to the ImageNet [12]
weights (Fig. 4B). Next, the extracted features were passed
through two dense layers to predict the fraction of tissue
covered by the tumor.

A {z}f, € R0

Resnet-50
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4
Linear Attention
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i=
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Figure 4. Model Architectures. (A) Predicting the number of peo-
ple in a scene. The Resnet50 model is used to extract features
from 6 patches of an image, along with an “attention” head that
combines them, followed by a dense layer to make predictions;
(B) Predicting the fraction of tumor cells in a histopathology im-
age. The Resnet152v2 model is used to extract features, followed
by predictions using dense layers.

C. Additional Benchmarks
C.1. People counting

We attempted transfer with models trained on a people
counting task. First, we trained the Attn-Resnet model to
count people with the NWPU dataset. Source predictions
were reasonably effective, with RMSE=459.01 and R=0.74.
Next, this pretrained model was transferred to the JHU-
crowd dataset (see Appendix B.3). The upper 2 rows of
Table 8 show the performance when all the data was used
for finetuning. All models were trained with mini-batches
of 16 samples, and only the best-performing checkpoint on
the held-out validation set was used for evaluating the test
set. Adam optimizer with an initial learning rate of 10~*
was used. Based on observations in the previous experi-
ments (Section 5) = 0.1 was used as the weight for the
unsupervised loss relative to the supervised loss.

To demonstrate the efficacy of CRAFT for SF-SSDA,
target labels from the training data of the JHU-crowd
dataset were removed randomly, but in a stratified manner.
Figure 5A shows how the performance of these models is
affected by reducing the fraction of labeled data (n,;/N
is the fraction of unlabeled samples). A lower proportion
of labeled data worsens the performance of all the models
(RMSE increases), but CRAFT outperforms other DA al-
gorithms. Surprisingly, naive transfer learning performed
better than SOTA algorithms for this problem. On fur-
ther investigation, we observed that the model trained on
the NWPU dataset readily generalized to the JHU-crowd
dataset (RMSE=451.62, R=0.75), already performing close
to the ceiling.

Figure 5B shows the prediction of people count in
a scene for the best CRAFT-based Attn-Resnet model.
Table 8 (lower 6 rows) summarizes the performance of
CRAFT when 98% of the data were unlabeled; CRAFT



outperforms SOTA SF-SSDA models by > 5% in terms
of RMSE. But supervised finetuning (TL) beat CRAFT by
17%. The correlation coefficient (R) also showed similar
trends (Fig. 6C). Several SF-SSDA methods rely on predict-
ing pseudo-labels from unlabeled target data, and it is possi-
ble that subpar pseudo-label prediction exacerbated the poor
performance of these algorithms.

Table 8. Source Free Semi-supervised Deep Transfer of the model
trained on the NWPU crowd dataset to the JHU dataset. The upper
part of the table (rows 1-3) shows the performance ceiling when all
labeled data in the target is used for training. The lower part (rows
4-9) shows SF-SSDA results when only 2% of the target samples
were labeled (3 seeds).

Method Rt RMSE (in #people) |
Naive Baseline - 724.17 + 1.11
Attn-Resnet (TL, 100%) 0.83 4+ 0.02 429.25 +5.63
SF-SSDA (2% labels)

Attn-Resnet + TL 0.73 + 0.01 459.05 + 4.41
Attn-Resnet + Mixup 0.34 £ 0.04 702.05 + 8.26
Attn-Resnet + BBCN 0.32 +0.06 1221.36 + 237.66
Attn-Resnet + TASFAR  0.27 + 0.03 620.55 4+ 37.28
Attn-Resnet + DataFree  0.67 £ 0.03 582.53 + 6.63
Attn-Resnet + CRAFT 0.69 + 0.02 550.77 + 9.86

C.2. Tumor size estimation

Finally, we attempted transfer with models trained to es-
timate the fraction of tumor tissue in a high-resolution
histopathological slide. The source model (Resnet152v2)
was trained to predict what fraction of the patched
Camelyon-16 dataset contained a tumor. Source predic-
tions were fairly accurate, with RMSE=0.19 and R=0.46.
Next, the model was transferred to make predictions on the
Camelyon-17 dataset (see Appendix B.4). All models were
trained with mini-batches of 32 samples, and only the best-
performing checkpoint on the held-out validation set was
used for evaluating the test set. Adam optimizer with an
initial learning rate of 10~% was used. As before, a = 0.01
was used as the unsupervised loss weightage relative to the
supervised loss.

The top of Table 9 (row 2) quantifies the performance
ceiling when all the training data are used (3 seeds). In
rows 3-8, we compare the performance of all the source-free
models when only 1% of the target dataset was labeled. We
observe that CRAFT outperformed all SF-SSDA methods
by > 6% on the correlation coefficient (R). Only DataFree
performs comparably in terms of RMSE. Figure 5C shows
that CRAFT performs better than all competing methods
when the fraction of unlabeled data is varied from 90-99%.
Similar trends were observed for the correlation coefficient
R (Fig. 6D). Figure 5D shows the prediction scatter of the
best-performing CRAFT model when 90% of the data was
labeled.

Table 9. Source Free Semi-supervised Deep Transfer of the model
trained on Camelyon-16 dataset to the Camelyon-17 dataset. The
upper part of the table (rows 1-3) shows the performance ceiling
when all labeled data in the target is used for training. The lower
part (rows 4-9) shows SF-SSDA results when only 1% of the target
samples were labeled (3 seeds).

Method R RMSE |
Naive Baseline - 0.313 £ 0.003
Resnet (TL, 100%) 0.773 £ 0.003 0.203 £+ 0.003
SF-SSDA (1% labels)
Resnet + TL 0.577 £0.026  0.260 £ 0.005
Resnet + Mixup 0.490 £+ 0.009 0.283 £+ 0.003
Resnet + BBCN 0.457 +£0.084 0.307 £ 0.017
Resnet + TASFAR 0.617 £0.020 0.290 + 0.012
Resnet + DataFree 0.630 £ 0.012 0.247 £ 0.003
Resnet + CRAFT 0.670 = 0.009 0.243 + 0.003
TL —— Mixup ~== TASFAR BBCN DataFree —— CRAFT === TL(100%)
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Figure 5. (A, C) RMSE (] ) for source-free semi-supervised do-
main adaptation of people counting (A) and tumor size (C) pre-
diction tasks, trained with varying proportions of unlabeled target
data n,;/N. Dashed black line: Performance ceiling. (B, D) Pre-
dictions for the best CRAFT model for people counting (B) and
tumor size prediction (D), with 80% and 90% unlabeled data, re-
spectively.

D. Analysis of hyperparameters: bin size, o

Bin Size. We varied the number of bins in the pseudo-label
selection step of CRAFT to quantify the effect of bin sizes.
We found the algorithm to be fairly robust to the choice of
bin sizes for both the neuroscience datasets (Table 10).

Unsupervised loss weight (o). For the Saccade predic-
tion task, a cross-validation set was available and hence,
only the best-performing model, based on the correspond-
ing «, is reported. However, a validation set was unavail-
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Figure 6. Correlation Coefficient R (1) for all the competing SF-
SSDA models at predicting (A) Saccade Amplitude; (B) Brain
Age; (C) Number of People; and (D) Tumor Coverage.

Table 10. Effect of bin size on the performance of CRAFT for
SF-SSDA for the saccade prediction (5% labeled) and brain-age
prediction (60% labeled) tasks.

EEGNet-LSTM (P~ 190K) SFCN (P~ 2.95M)

Bin Size Rt RMSE | Rt RMSE |
% Range(y)

0.50 0.88+0.01 6725+046 0.65+£0.03 6.53+0.15
0.33 089 £0.01 65.84+098 0.55+£0.02 691%0.09
0.25 089 +0.01 67.39+£139 0.62+£0.01 6.60+0.02
0.20 0.89+0.01 6521+0.89 0.64+£0.02 6.36=+0.09

able for brain age prediction. Hence, we report the perfor-
mance across three « values {0.01,0.1,1.0} in Table 11.
While CRAFT outperforms competing models for low val-
ues of alpha, large weightages to the unsupervised loss (e.g.,
«a = 1) result in comparatively poor performance.

Table 11. Effect of o (unsupervised loss weight) on the perfor-
mance of CRAFT and other competing methods for SF-SSDA for
the brain-age prediction (20% labeled) tasks.

TASFAR DataFree CRAFT

o R?T RMSE | R?T RMSE | RT RMSE |
001 0404007 7.53+0.18 031004 7824020 0.51+0.03 7.31+0.17
0.10 0424007 7474015 0504005 7.35+0.15 0.51+0.03 7.14+0.11
100 0.40+0.06 7.47+021 007+002 870+006 037+003 864+0.15

E. Further Details

E.1. Compute Resources and Software

All the algorithms were implemented using TensorFlow 2.x,
and experiments were run on 24 GB RTX-4090Ti, 32 GB
V100, and 40 GB A100 GPUs.

E.2. Code Availability

The implementation of all the methods described in the
study is publicly available in the following repository

— https://github.com/mainak-biswas1999/
CRAFT_ICCV2025.git.


https://github.com/mainak-biswas1999/CRAFT_ICCV2025.git
https://github.com/mainak-biswas1999/CRAFT_ICCV2025.git
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