Supplementary
RayGaussX: Accelerating Gaussian-Based Ray Marching for Real-Time and
High-Quality Novel View Synthesis

Supplementary Overview

This supplementary material is organized as follows. Sec-
tion 1 discusses current limitations and outlines future work.
Section 2 derives the upper bound on the volume ratio (see
Sec. 3.4 of the main paper). We first outline a general
derivation of the bound in Subsection 2.1, then compute
the minimum AABB of an ellipsoid in Subsection 2.2, and
finally establish an upper bound on its volume in Subsec-
tion 2.3. Section 3 connects the densification criterion with
the projected-mean derivative. Section 4 experimentally
demonstrates that the new densification criterion more ef-
fectively densifies regions far from camera poses. Section 5
presents a detailed ablation study evaluating the impact of
each contribution. Section 6 presents a targeted compari-
son of our approach with two related methods: 3D Gaus-
sian Splatting (3D-GS) [9] and 3D Gaussian Ray Tracing
(3DGRT) [16]. First, we compare rendering quality using
the same appearance model (spherical harmonics / spheri-
cal Gaussians) for both 3D-GS and our method to isolate the
impact of their rendering pipelines. Second, we analyze the
different constraints of our approach and 3DGRT that mo-
tivate our choice of enclosing volumes. Section 7 presents
additional experimental results in two parts: Subsection 7.1
shows qualitative comparisons, and Subsection 7.2 provides
detailed quantitative evaluations.

1. Limitations and Future Work

The proposed approach achieves state-of-the-art rendering
quality with a reasonable training time of 60—80 minutes
and enables interactive rendering. However, this requires
a high-end GPU (NVIDIA RTX 4090 in our experiments),
whereas Gaussian Splatting and its variants can run on mo-
bile devices or in web-GL environments. Future work could
further accelerate rendering with novel optimizations. Ad-
ditionally, our approach does not properly handle alias-
ing, which falls outside the scope of this paper and could
be addressed by future work. Nevertheless, RayGaussX’s
fast training and high-quality rendering make it a strong
framework for applications requiring high accuracy, in-
cluding surface reconstruction [6], inverse rendering [11],

SLAM [14], camera optimization [12], and relighting [3].

2. Computation of the upper bound on the ra-
tio of volumes

In this section, we derive the upper bound used for the
volume ratio in Section 3.4 Limiting Highly Anisotropic
Gaussian of the main paper. First, in Subsection 2.1, we
present a general derivation of this bound by assuming in-
termediate results, which are then proven in Subsections 2.2
and 2.3.

2.1. Derivation of the Volume Ratio Bound

We consider here the computation of an upper bound for the

ratio:
B Vol(AABB(E))

Vol(€)
with Vol the volume function, £ a given ellipsoid, and
AABB(€) its associated axis-aligned bounding box.

In particular, if we consider the [-th primitive of our rep-
resentation, the ellipsoid associated with the [-th Gaussian
is the o.-level isosurface of the density function of the [-th
primitive:

(D

oi(x) = 61 - exp (-;(X —)" E T (x - Ml)) @)

where o, is the chosen density threshold [4]. In order
to avoid overloading the notations, we omit the index [
hereafter. The covariance matrix can be decomposed as:
3 = RSSTRT where R = (r; j)1<i j<3 is a rotation ma-
trix and S = diag(sy, s2, s3) a scale matrix. Hence, the
ellipsoid associated with the primitive can be described by
the equation:

(x—p)'E (x—p) <1 3)

suchthat ¥ = RS gTRT, where S = /2 ln(ai> -S. The
volume of ellipsoid £ is then:

Vol(€) = 4?” [2 ln(%ﬂ

3/2
S1 82 83

Also, it can be shown that the volume of the associated
AABB, Vol(AABB(E)), is equal to (see Subsection 2.2 for
details):

3 | 3
8 (2 ln(oi)) : H(ril s% + T323§ + r%s%) (@)
1

1=
And therefore, the ratio of the volumes is:

3 2 .2 2 .2 2 2
6 \/Hi:l (Tm ST+ 1983 + 13 s3)
s S1 89 S3

r ®)
independent of the scale factor introduced by o, and &.
Subsequently, we ensure that this ratio remains rotation-
invariant to avoid bias toward any particular Gaussian ori-
entation, and we constrain the worst-case scenario by com-
puting an upper bound (see Subsection 2.3 for details):

[\l

Vol(AABB(E)) 2
Vol(€) T V3
Thus, we obtain the expression for the upper bound

used in the main article in the section Limiting Highly
Anisotropic Gaussian.

(s% + s% + s%)
S1 89 S3

(6)

2.2. Computation of the Minimum Axis-Aligned
Bounding Box for an Ellipsoid

Considering the ellipsoid £ defined in global coordinates by
(x-S Nz —p) <1 (7)

with: ¥ = RS STRT and S = diag(5y, 52, 53), where the
rotation matrix R = (r;;) performs the transformation of
the ellipsoid (aligned in its local coordinate system) into the
global coordinate system.

In this section, we determine the minimum axis-aligned
bounding box for the ellipsoid £. To obtain the axis-aligned
bounding box in the world reference frame, we need to de-
termine, for each axis ¢ in the world frame (with i = 1,2, 3
corresponding to x, y, and z), the maximum half-length L;
such that

_ PP _ Ty —1 _
L= max {fo;— |« @ - p)"S @ -w <1} ®

The volume of the axis-aligned bounding box (AABB)
will then be computed as

3
Vol(AABB(E)) = [] 2L:)

i=1
First, we introduce the local variable in the ellipsoid-
centered reference frame: y = RT(z — u) and thus we

obtain: (x — p) = Ry thanks to the orthogonality of R.
Similarly, the half-lengths can be re-expressed using the lo-
cal coordinate y in the ellipsoid’s reference frame, using the
fact that:

3
s — | = |z =l = D rigys (10)
j=1
and:
@—p)'SNe—p)=y"(SS")y<1 A

Since S is diagonal, this constraint can be rewritten as:

3 N 2
> (L) <
=1 N

Thus, we obtain the new expression for the half-lengths:

3 3 2
Yj
Li = iilYqil : o <1 . 12
max jgzlrjyj]E:l (sj) = (12)

We now introduce the variable z; = g—f and reformulate

the problem in terms of the variable z, which belongs to the
unit ball in R3, as follows:

3
L; = 5z Y<1booas
max ZTJSJZJ Z(ZJ) S 13)

3
> s (14)

where the maximum is attained for the vector collinear to
r; .S with unit norm. Consequently, the volume of the axis-
aligned bounding box can be computed as:

Vol(AABB(E)) = 8

Thus, we derive the formula used to compute the expression
of r in Section 2.

2.3. Upper Bound on the Volume of the Enclosing
Axis-Aligned Bounding Box

We express the volume of the AABB enclosing the ellipsoid
in the form:

Vol(AABB(£)) = 8 (16)

We use s instead of s because, at the stage of the section 2
requiring this upper bound, the scaling accounting for o and
o is no longer necessary.

Here, we apply the arithmetic-geometric inequality to

li = Z?:l T?jS?, yielding:

3
lilal3 < (W) (17)

with equality when [y = [, = l3. Then, we have:

3 3 3
D L= e as)

We can note here that, since the matrix R is orthogonal, its

. 3
columns form an orthonormal basis, thus) r2 =1,

i=1"1j
yielding:

3
dNhi=> s (19)
i=1

Jj=1

3 2 3
. S A
llals < (%”) (20)

Thus, knowing that Vol(AABB(E)) = 8v/l1lal3, and by
using the equations (20), we obtain:

and:

N

3

8
Vol(AABB(€)) < —= s 21
(AABB(£)) < 2= ; ; 21)
This expression enables us to establish an upper bound on
the ratio r in Section 2. Moreover, this upper bound is
achieved when the half-lengths are equal Ly = Ly = L3

(since L; = /T;).

3. Connecting the Densification Criterion and
the Projected Mean Derivative

In this section, o denotes the center of the camera, f its focal
distance, and the position of a Gaussian. We will see here
that the densification criterion can be expressed in terms of
the gradient with respect to the position u projected onto
the sphere centered at o with radius f, under well-chosen
assumptions. We define the projection P : R? \ {0} — R3
by:

w—o
[= oll
where f > 0 is the camera’s focal distance and o is the
camera center. Thus, P(u) is always a point on the sphere
of radius f centered at 0. Here, we introduce a new param-
eterization based on the position on the sphere. We define
i = (up,r) where:

P(u) = o+ f (22)

o

e up = P(p) =0+ f HZ%OH is the projection of p €

R3 \ {o} onto the sphere S?%(o, f) (the sphere of radius
f > 0 centered at 0).
* r = ||u — ol is the radial distance of x from o.

We then define the reprojection function F : S?(o, f) x
R, — R3? such that:

r
MZF(up,r)zojtf(up—O) (23)
Also, by introducing the unit vector u = ﬁ, we note

that the derivatives of F' with respect to the parameters can
be expressed as follows:

or r T

where I — uu” is the projector onto T}, 5%(o, f) = {v €
R3 | v - u = 0}, the tangent space to the sphere centered at
o and with radius f at the point up = o + fu. This multi-
plication by the projection is necessary because pp is con-
strained to lie on the sphere S?(o, f); hence, its derivatives
must lie in the tangent space T}, .S (o, f). Furthermore, we
have:

oF 1
— == — 25
o f (p — o) (25)
Thus, we obtain the gradients, with respect to pp:
VL= %(1 —w")V,L (26)
and the radial component:
1
V.L = 7 (pp —0)' V,L 27)

Experimentally, we observe that the derivative along the ra-
dial direction is significantly smaller compared to the tan-
gential components. Also, we assume in the following anal-
ysis that V, L - u = 0. Thus, we have:

V,.L€T,,S*o,f) (28)

Moreover, since (I — uu™) is a projector onto T}, ., 5% (o, f)
and VL lies in this tangent space, we have:

(I —wu")V,L=V,L. (29)
and:
(up —0)"V,L=0 (30)
Thus, we finally obtain that:
VL= %v#L 31)
and:
V,.L=0 (32)

New densification

0

Old densification Ground-truth

Figure 1. Comparison of background reconstruction for image 1 in the garden test scene. From left to right, the full scene with the region
of interest highlighted in red, the reconstruction obtained with the new densification criterion, the reconstruction obtained with the previous

densification criterion, and the corresponding ground-truth image crop.

Therefore, the gradient with respect to the projection on the
sphere is, in this case, proportional to the gradient in the 3D
space, and by taking the norm, we obtain:

,
IVup L]l = 7 IV Ll (33)

4. Experimental Evaluation of Densification

In this section, we experimentally demonstrate the effec-
tiveness of the new densification criterion. To this end, we
train the garden scene from the MipNeRF360 dataset first
using the original criterion and then using the new densifica-
tion criterion, with densification parameters tuned to yield
approximately the same number of Gaussians in the scene
(around 4 million). Subsequently, by considering the point
clouds associated with the centers of the Gaussians, we
compute the number of neighbors of each Gaussian within
aradius of R = 0.125 and use this metric to denote the den-
sity of Gaussians around a given Gaussian. The point clouds
associated with this scalar field are shown in Fig. 2. In this
scene, the cameras are predominantly positioned around the
central table. Under the new densification criterion, there
remains a significant number of Gaussians around the table,
which corresponds to the area with the most information,
and there are also more points distributed in the distant re-
gions. In particular, the right-hand side of the garden scene
contains a higher density of Gaussians, confirming the ef-
fectiveness of the new criterion in better densifying distant
areas.

Moreover, we demonstrate the effect of the new densifi-
cation on rendering in Fig. | by comparing the background
reconstruction of image 1 in the garden scene test set. As
shown, the previous densification produces a poorly recon-
structed background that appears blurry and lacks detail. In
contrast, our new approach yields a much more accurate
background reconstruction, with fine details such as the re-
flection on the glass pane clearly visible.

(a) Raygauss densification (b) RaygaussX densification

Figure 2. Densification comparison in the MipNeRF360 garden
scene using Raygauss and RaygaussX criteria. The color gradient
from blue through green, yellow, and red encodes on a logarithmic
scale the increasing number of Gaussian neighbors within a radius
of R = 0.125.

5. Detailed ablation study of each contribution

In this section, we present a detailed ablation study of the
various contributions introduced in RayGaussX to comple-
ment the study presented in the main paper by detailing
the influence of each component individually. Specifically,
we investigate the influence of the main contributions: the
novel densification strategy (D) which yields a more uni-
form distribution of Gaussians in regions distant from the
camera poses, empty-space skipping (E), adaptive sampling
(A), spatial reordering of Gaussians via a Z-order curve (Z),
ray coherence optimization (R) and the isotropic loss (L).

This ablation study, presented in Table 1, is designed
to determine how each individual contribution and their
combinations influence rendering quality (PSNR, SSIM,
LPIPS), training time, and inference speed in frames
per second (FPS). First, rows (1) and (1*) demonstrate
that implementation-level optimizations provide a stronger
baseline than RayGauss in terms of training time and FPS,
while preserving comparable rendering performance. These
improvements are not described in the paper as they con-
sist of using faster operations and pertain to implementa-
tion details. However, interested readers may compare our
code, available online, with the implementation from the
RayGauss paper.

Next, rows (2), (3), (5), (6), and (9) confirm that the core
contributions of the paper effectively reduce both training

D|E AJ| Z R| L|PSNRt SSIMt LPIPS| Train) FPSt
0 28.06 0879 0.103 585min 0.5
(1%) 28.14 0.885 0.090 297min 1.5
2) v 28.14 0.884 0.090 218min 4.4
3) v 28.13 0.885 0.089 191min 4.7
(4) v 28.14 0.884 0.090 180min 5.9
(5) v 28.14 0.885 0.089 237min 2.4
(6) v 28.12 0.884 0.090 238min 2.4
(7) v Vv 28.15 0.885 0.089 200min 3.6
(8) v viv v 28.15 0.885 0.089 125min 10.2
9) v | 2812 0885 0.090 133min 10.1
(10) v v |v v | v]| 2816 0885 009 88min 26.1
(1) | v 2838 0.887 0.090 294min 1.8
a2 | v i||v v 2835 0.887 0.089 168min 6.3
W |v | |v v||v v 2836 0.888 0.089 116min 10.5
| v |v vi||v v |v | 2835 087 009 8imin 274

Table 1. Ablation study of key contributions on the garden scene from the Mip-NeRF360 dataset (D: new Densification criterion; E:
Empty-space Skipping; A: Adaptive sampling; Z: Z-curve re-indexing of Gaussians; R: Ray coherence; L: Loss for isotropic Gaussians).
Row (1) represents the original RayGauss method [4], Row (1*) corresponds to the optimized RayGauss baseline underlying RayGaussX,
incorporating implementation-level optimizations but excluding the main contributions (D, E, A, Z, R, L) and row (14) corresponds to our

full method, RayGaussX.

and inference times. We also observe that overall render-
ing quality is minimally affected by these contributions,
demonstrating that they accelerate rendering without any
significant trade-off in quality. The isotropic loss appears
to slightly reduce PSNR, but this effect is minor.

Rows (4), (7), (8), and (10) illustrate the cumulative ef-
fect of the individual contributions. We observe no ac-
cumulation of errors that could degrade the rendering-
quality metrics; indeed, the PSNR remains approximately
28.14 dB. This confirms that, with the chosen hyperparame-
ters, the contributions do not compromise rendering quality.
Furthermore, training and inference are accelerated when
combining these contributions, achieving a training time of
88 minutes and an inference speed of 26.1 FPS when all
speed-related contributions are applied.

Finally, rows (11), (12), (13), and (14) highlight the in-
fluence of the new densification on the algorithm’s perfor-
mance. It is clear that the new densification yields supe-
rior rendering quality by better densifying distant regions,
as shown in Section 4. In particular, with the new den-
sification we achieve a PSNR of approximately 28.36 dB
compared to 28.14 dB obtained with (1*). Furthermore, by
comparing rows (12), (13), and (14) to their counterparts
without the new densification, we observe that the new den-

sification also appears to slightly accelerate rendering and
inference times.

6. Selective comparison with related methods

In this section, we present a targeted comparison of our ap-
proach with two related methods: 3D Gaussian Splatting
(3D-GS) [9] and 3D Gaussian Ray Tracing (3DGRT) [16].
First, we compare rendering quality using the same ap-
pearance model, spherical harmonics/spherical Gaussians,
for both 3D-GS and our method to isolate the impact of
their rendering pipelines. Second, we analyze the different
constraints of our approach and 3DGRT that motivate our
choice of enclosing volumes.

6.1. Rendering quality comparison with a similar
appearance model

In this subsection, we compare RayGaussX with 3D Gaus-
sian Splatting (3D-GS) under the same appearance model
(spherical harmonics and spherical Gaussians). Using an
identical appearance representation isolates the rendering
algorithm’s impact on output quality, since both meth-
ods employ Gaussian primitives within an identical ap-
pearance framework. We evaluate both methods on the
datasets introduced in the main paper: NeRF-Synthetic,

Method NeRF-Synth. NSVF-Synth. Mip-NeRF360 Tanks & Temp. Deep Blending
3D-GS 33.39/0.968 37.07/0.987 27.80/0.825 23.72/0.848 29.92/0.905
3D-GS (SH, SG) 33.88/0.971 38.06/0.988 28.12/0.827 23.81/0.855 29.88/0.908
RayGaussX (ours) 34.54/0.974 38.75/0.991 28.43/0.842 23.76/0.865 30.32/0.915

Table 2. Comparison in terms of PSNR/SSIM of RayGaussX (ours) and 3D-GS methods (with and without spherical harmonics/gaussians)
on NeRF-Synthetic, NSVF-Synthetic, Mip-NeRF360, Tanks and Temples, and Deep Blending datasets. Best results in bold.

NSVE-Synthetic, Mip-NeRF360, Tanks&Temples, and
Deep Blending. The appearance model comprises nine
spherical harmonics and seven spherical Gaussians per
primitive. The resulting PSNR and SSIM values are re-
ported in Fig. 2. Results show that the SH/SG formulation
also enhances 3D-GS’s performance. However, except for
PSNR on Tanks&Temples, across all datasets and for ev-
ery standard metric, RayGaussX outperforms the modified
3D-GS in terms of rendering quality, confirming the advan-
tage of employing Volume Ray Marching. This aligns with
theory, as ray marching provides a less approximate formu-
lation that avoids rendering artifacts such as flickering com-
pared to 3D-GS rasterization. Additionally, as noted by the
authors of [1], the Tanks & Temples [10] dataset exhibits
significant lighting variations, making conclusions drawn
from this dataset somewhat uncertain.

6.2. Enclosing volume selection

The recent 3DGRT method [16] also uses the OptiX API to
ray trace Gaussian primitives. However, their choice of en-
closing volume differs from ours: they use bounding poly-
hedra and we use axis aligned bounding boxes(AABB). We
explain the reasons for this difference in this subsection.

The 3D Gaussian Ray Tracing approach performs ray
tracing of Gaussians with a single sample per Gaussian;
this simplified approach approximates the rendering equa-
tion and, unlike RayGauss, does not account for the over-
lap of multiple Gaussians. Additionally, compared with
AABBs, 3DGRT’s complex bounding primitives raise two
issues. First, constructing them and building the associ-
ated BVH are several orders of magnitude slower (Fig. 9 in
3DGRT paper), so the frequent BVH rebuilds required dur-
ing training become a bottleneck in scenes with many prim-
itives. A second drawback stems from using polyhedra with
the OptiX API for ray marching: indeed, we integrate each
ray segment sequentially. However, if a segment lies en-
tirely within a bounding polyhedron, OptiX reports no inter-
section, wrongly treating it as empty because it crosses no
faces. In contrast, with AABBs, an OptiX-specific behavior
is that it reports an intersection even for fully enclosed seg-
ments. For these reasons, AABBs are better suited to our
Volume Ray Marching algorithm than the bounding poly-
hedra proposed by 3DGRT.

7. Additional experimental results

7.1. Qualitative results

Fig. 3 presents qualitative results of our RayGaussX ap-
proach compared to RayGauss [4], Zip-NeRF [2], and 3D-
GS [9] on the Mip-NeRF360 [1] dataset. First, we observe
that the qualitative results are very similar between Ray-
GaussX and RayGauss for indoor scenes. However, for out-
door scenes, our approach shows a clear improvement in
background rendering thanks to our new densification crite-
rion. The Zip-NeRF method achieves very good visual re-
sults but produces grainy images (particularly noticeable in
the counter scene) and sometimes generates floaters, as seen
on the wooden foot in the treehill scene. Finally, 3D-GS ex-
hibits lower reconstruction quality, with less accurately re-
constructed objects, which is especially visible in the shelf
of the room scene.

As noted by the authors of [1], the Tanks&Temples [10]
dataset contains images with significant variations in light-
ing conditions, making conclusions drawn from this dataset
somewhat uncertain. Moreover, we can observe that the
Zip-NeRF [2] method failed on this dataset.

7.2. Detailed quantitative results

Tab. 3, Tab. 4, Tab. 5, and Tab. 6 show the detailed per scene
results of the main paper with metrics PSNR, SSIM, and
LPIPS on the NeRF Synthetic [15], NSVF Synthetic [13],
Mip-NeRF360 [1], Tanks&Temples [10] and Deep Blend-
ing [8] datasets.

All methods with an * in tables of the main paper and
supplementary have been re-trained using the available on-
line code of respective methods:

* 3D Gaussian Splatting: https://github.com/
graphdeco-inria/gaussian-splatting

* Mip-Splatting: https : / / github . com /
autonomousvision/mip-splatting
* Spec-Gaussian: https : / / github . com /

ingraldm/Specular—-Gaussians

e Zip-NeRF: https://github.com/ jonbarron/
camp_zipnerf

* RayGauss: https://github.com/hugobll/
ray_gauss

Ticuet o Ring Ticke 1o Riop

(a) Ground Truth (b) RayGaussX (ours) (c) RayGauss [4] (d) Zip-NeRF [2] (e) 3D-GS [9]

(f) Ground Truth (g) RayGaussX (ours) (h) RayGauss [4] (i) Zip-NeRF [2] (j) 3D-GS [9]

Figure 3. Qualitative results on the Mip-NeRF360 [1] dataset. The scenes are from the top down: bonsai, counter, room, garden, bicycle,
treehill.

PSNR 1
chair drums ficus hotdog lego materials mic ship | Avg.
Instant-NGP [17] 35.00 26.02 3351 3740 36.39 29.78 36.22 31.10 | 33.18
Mip-NeRF360 [1] 3565 25.60 33.19 37.71 36.10 29.90 36.52 31.26 | 33.24

Point-NeRF [18] 3540 26.06 36.13 37.30 35.04 29.61 3595 3097 | 33.30
3D-GS [9]* 35.85 2622 3500 37.81 35.87 30.00 35.40 3095 | 33.39
Zip-NeRF [2]* 35778 2591 3472 38.05 35.79 31.05 3592 | 3233 | 33.69

Mip-Splatting [20]* | 36.23 2629 3533 38.04 36.13 30.37 36.22 31.32 | 33.74
Spec-Gaussian [19]* | 36.20 26.76 35.56 38.04 36.06 30.61 35.78 31.45 | 33.80

3DGRT [16]* 3569 2588 (3654 37.98 3680 3040 3588 31.73 | 33.86
NeuRBF[7]* [3654 2638 3501 ES644T SN 016 3173 | 3447
RayGauss [4]* 3720 27.04 3511 3830 37.10 3136 3801 31.95 | 3453

RayGaussX (ours) 37.19 27.10 35.09 @ 38.46 37.01 31.33 38.02 32.13 | 34.54

SSIM 1
chair drums ficus hotdog lego materials mic ship | Avg.
Instant-NGP [17] 0979 0937 0981 0.982 0.982 0.951 0.990 0.896 | 0.963
Mip-NeRF360 [1] 0983 0931 0979 0982 0.980 0.949 0.991 0.893 | 0.961

Point-NeRF [18] 0984 0935 0987 0982 0978 0.948 0.990 0.892 | 0.962
3D-GS [9]* 0.988 0.955 0988 0.986 0.983 0.960 0.992 0.893 | 0.968
Zip-NeRF [2]* 0987 0.948 0987 0.987 0.983 0.968 0.992 £ 0.937 | 0.974

Mip-Splatting [20]* | 0.988 0.955 0988 0.987 0.984 0.963 0.993 0.908 | 0.971
Spec-Gaussian [19]* | 0.987 0.955 0988 0.986 0.983 0.964 0.992 0.906 | 0.970

3DGRT [16]* 0.987 0954 [0.989 098 0985 0961 0.991 0909 | 0.970
_NeuRBF[7]* | 03880 0544 0987 HOSEST SN 0992 05257 SN
RayGauss [4]* 0.990 0960 0.988 0988 0986 0969 0995 0914 | 0.974

RayGaussX (ours) 0.990 0.959 0988 0.988 0.986 0.969 0.995 00914 | 0.974

LPIPS |
chair drums ficus hotdog lego materials mic ship | Avg.
Instant-NGP [17] 0.022 0.071 0.023 0.027 0.017 0.060 0.010 0.132 | 0.045
Mip-NeRF360 [1] 0.018 0.069 0.022 0.024 0.018 0.053 0.011 0.119 | 0.042

Point-NeRF [18] 0.023 0.078 0.022 0.037 0.024 0.072 0.014 0.124 | 0.049
3D-GS [9]* 0.011 0.037 0.011 0.017 0.015 0.034 0.006 0.118 | 0.031
Zip-NeRF [2]* 0.013 0.045 0.013 0.017 0.015 0.031 0.006 | 0.082 | 0.028

Mip-Splatting [20]* | 0.013 0.038 0.011 0.017 0.015 0.033 0.006 0.098 | 0.029
Spec-Gaussian [19]* | 0.011 0.034 0.011 0.017 0.015 0.030 0.005 0.094 | 0.027

3DGRT [16]* 0.016 0047 0013 0024 0016 0046 0009 0.123 | 0.037
_NeuRBF[7J* | 0.016 0061 0016 _0.021 BEEEEN 0032 0008 0114|0035
RayGauss [4]* 0.009 0030 0011 0015 0012 0026 0004 0.088 | 0.024

RayGaussX (ours) 0.009 0.030 0.010 0.015 0.012 0.026 0.004 0.088 | 0.024

Table 3. PSNR, SSIM and LPIPS (with VGG network) scores on the NeRF Synthetic dataset [15]. All methods are trained on the
train set with full-resolution images (800x800 pixels) and evaluated on the test set with full-resolution images (800x800 pixels). Methods
marked * were retrained on an NVIDIA RTX4090.

Bike Life Palace Robot Space Steam Toad Wine | Avg.

TensoRF [5] 39.23 3451 3756 3826 3860 37.87 3485 3132|3653
3D-GS [9]* 4076 33.19 38.89 39.16 36.80 37.67 3733 3276 | 37.07
Mip-Splatting [20]* | 40.34 35.06 39.00 39.34 37.11 3842 36.64 3230 | 37.28
NeuRBF [7] 40.71 36.08 3893 39.13 [4044 3835 3573 3299 | 37.80
Spec-Gaussian [19]* | 40.93 36.17 39.39 39.64 40.12 38.08 36.63 32.82 | 37.97
RayGauss [4]* | 4125 3621 4030 4037 40.03 39.08 38.39 34.12 | 38.72

RayGaussX (ours) 4134 3639 4028 4032 40.11 @ 39.12 3839 34.01 | 38.75

SSIM 1

Bike Life Palace Robot Space Steam Toad Wine | Avg.
TensoRF [5] 0993 0.968 0979 0994 0989 0.991 0.978 0.961 | 0.982
3D-GS [9]* 0994 0979 0983 0994 0991 0.993 0.985 0.975 | 0.987
Mip-Splatting [20]* | 0.995 0.982 0.985 | 0.996 0.992 0994 0.985 0.978 | 0.988
NeuRBF[7] 0995 0.977 0985 0995 0993 0.993 0.983 0972 | 0.987
Spec-Gaussian [19]* | 0.995 0.982 0.986 ' 0.996 0994 0.994 0985 0.977 | 0.989

" RayGauss [4]* [0996 0.983 0987 0.996 0994 0.994 00989 0.981 | 0.990

RayGaussX (ours) 0996 0.984 0989 099 0995 0.995 0.989 0.981 | 0.991

LPIPS |

Bike Life Palace Robot Space Steam Toad Wine | Avg.
TensoRF [5] 0.010 0.048 0.022 0.010 0.020 0.017 0.031 0.051 | 0.026
3D-GS [9]* 0.005 0.028 0.017 | 0.006 0.009 0.007 0.018 0.025 | 0.014
Mip-Splatting [20]* | 0.005 0.024 0.015 0.007 0.010 0.008 0.019 0.022 | 0.014
NeuRBF[7] 0.006 0.036 0.016 0.009 0.011 0.011 0.025 0.036 | 0.019
Spec-Gaussian [19]* | 0.004 0.022 0.013 0.006 0.007 0.007 0.016 0.020 | 0.012

“RayGauss [4]* [0.003 0.022 0.011 0.006 0.007 0.006 0.012 0.017 | 0.011

RayGaussX (ours) 0.003 0.021 0.011 0.006 0.006 0.006 0.011 0.018 | 0.010

Table 4. PSNR, SSIM and LPIPS (with VGG network) scores on the NSVF Synthetic dataset [13]. All methods are trained on the
train set with full-resolution images (800x800 pixels) and evaluated on the test set with full-resolution images (800x800 pixels). Methods
marked * were retrained on an NVIDIA RTX4090.

PSNR 1
bonsai counter kitchen room | bicycle flowers garden stump treehill | Avg.

Instant-NGP [17] 30.69 26.69 2948 29.69 | 22.17 20.65 25.07 2347 2237 | 25.59
3DGRT [16]* 31.93 28.51 29.67 30.68 | 24.74 2136 2682 2625 22.05 | 26.89
Mip-NeRF360 [1] 3346 2955 3223 31.63 | 24.37 21.73 2698 2640 2287 | 27.69
3D-GS [9]* 3262 29.17 31.39 31.96 | 25.65 21.77 27.62 27.00 23.00 | 27.80

Mip-Splatting [20]* | 3242 29.41 31.85 31.68 [12597 1 2208 2797 2731 2271 | 27.93
Spec-Gaussian [19]% | 33.26 29.86 3245 3215 | 2581 2152 2800 27.17 2223 | 28.05
_ZipNeRF[21* [/3479 | 29.12 3236 [3304 | 2585 | 2233 2822 | 27.35 2395 | 28.56

RayGauss [4]* 3391 3056 32.83 31.83 | 2551 2185 2806 2633 23.18 | 28.23
RayGaussX (ours) 34.06 30.64 3292 3211 | 2571 2231 | 2835 2666 23.15 | 28.43

SSIM 1
bonsai counter kitchen room | bicycle flowers garden stump treehill | Avg.
Instant-NGP [17] 0906 0.817 0.858 0.871 | 0.512 0486 0.701 0.594 0.542 | 0.699
3DGRT [16]* 0.941 0.904 0914 0914 | 0.744 0.612 0.848 0.767 0.621 | 0.807
Mip-NeRF360 [1] 0.941 0.894 0.920 0913 | 0.685 0.583 0.813 0.744 0.632 | 0.792
3D-GS [9]* 0947 0916 0.933 0.929 | 0.777 0.618 0.868 0.783 0.654 | 0.825

Mip-Splatting [20]* | 0.952 0921 0937 0933 [0:803 0656 0.885 [0:801 0.657 | 0.838
Spec-Gaussian [19]% | 0.954 0923 0938 0935 | 0796 0647 0881 0796 0.645 | 0.835
_ZipNeRF[2]* | 0952 0905 0929 0929 | 0772 0637 0.863 0788 | 0.674 | 0.828

RayGauss [4]* 0957 0932 0.942 0936 | 0.782 0.634 0879 0.775 0.672 | 0.834
RayGaussX (ours) 0959 0932 0943 0.939 | 0.797 0.655 0.887 0.789 = 0.677 | 0.842

LPIPS |
bonsai counter kitchen room | bicycle flowers garden stump treehill | Avg.
Instant-NGP [17] 0.205 0.306 0.195 0.261 | 0446 0.441 0.257 0421 0450 | 0.331
3DGRT [16]* 0249 0.258 0.169 0.295 | 0254 0335 0.145 0251 0372 | 0.259
Mip-NeRF360 [1] 0.176 0.204 0.127 0.211 | 0.301 0344 0.170 0261 0339 | 0.237
3D-GS [9]* 0.178 0.181 0.114 0.195 | 0.213 0336 0.115 0211 0326 | 0.208

Mip-Splatting [20]* | 0.161 0.167 0.109 0.177 [T0.164 " 0266 0.090 "0.182" 0270 [0.176
Spec-Gaussian [19]* | 0.163 0.167 0.108 0.178 | 0.167 = 0263 0.093 0.185 0270 | 0.177
_ZipNeRF[2]* [10.1347 0.160 [70.102 0159 | 0.198 0276 0117 _0.199 [[0239 | 0.176

RayGauss [4]* 0.163 0.157 0.105 0.178 | 0.205 0306 0.103 0221 0297 | 0.193
RayGaussX (ours) 0.154 0.156 0.103 0.171 | 0.177 0.285 0.090 0.200 0.262 | 0.177

Table 5. PSNR, SSIM and LPIPS (with VGG network) scores on the Mip-NeRF360 dataset [15]. All methods are trained and tested
on downsampled images by a factor of 2 in indoor (bonsai, counter, kitchen, room) and 4 in outdoor (bicycle, flowers, garden, stump,
treehill). Methods marked * were retrained on an NVIDIA RTX4090.

PSNR 1
train truck | Avg. || drjohnson playroom | Avg.
Instant-NGP [17] 2046 23.38 | 21.92 28.26 21.67 24.97
3DGRT [16]* 21.06 24.41 | 22.74 29.16 30.33 29.74
Mip-NeRF360 [1] 19.52 2491 | 22.22 29.14 29.66 29.40
3D-GS [9]* 22.03 25.41 | 23.72 29.52 30.32 29.92
Mip-Splatting [20]* | 21.78 | 25.66 | 23.72 28.83 30.19 29.51
Spec-Gaussian [19]* | 22.10 25.62 | 23.86 29.03 30.31 29.67
Zip-NeRF [2]* 10.53 11.16 | 10.85 L 30.28 31.23 t30.76
RayGauss [4]* 21.80 24.59 | 23.20 29.74 30.85 30.30
RayGaussX (ours) 22.24 2527 | 23.76 29.85 30.79 30.32
SSIM 1
train truck | Avg. || drjohnson playroom | Avg.
Instant-NGP [17] 0.689 0.800 | 0.745 0.854 0.779 0.817
3DGRT [16]* 0.814 0.873 | 0.844 0.904 0.906 0.905
Mip-NeRF360 [1] 0.660 0.857 | 0.759 0.901 0.900 0.901
3D-GS [9]* 0.816 0.880 | 0.848 0.904 0.905 0.905
Mip-Splatting [20]* | 0.827 0.893 | 0.860 0.899 0.907 0.903
Spec-Gaussian [19]* | 0.823 0.888 | 0.856 0.902 0.910 0.906
Zip-NeRF [2]* 0.300 0.351 | 0.326 0.912 0.915 0.914
" RayGauss [4]* | 0.814 0.883 | 0.849 | 0912 ~ 0916 | 0914
RayGaussX (ours) 0.834 0.896 | 0.865 0.913 0.916 0.915
LPIPS |
train truck | Avg. || drjohnson playroom | Avg.
Instant-NGP [17] 0.360 0.249 | 0.305 0.352 0.428 0.390
3DGRT [16]* 0.223 0.170 | 0.197 0.316 0.313 0.315
Mip-NeRF360 [1] 0.354 0.159 | 0.257 0.237 0.252 0.245
3D-GS [9]* 0.205 0.150 | 0.178 0.241 0.246 0.244
Mip-Splatting [20]* | 0.190 0.123 | 0.157 0.246 0.239 0.243
Spec-Gaussian [19]* | 0.196 0.135 | 0.166 0.245 0.245 0.245
Zip-NeRF [2]* | 0.658 0.664 | 0.661 L 0.217 0.201 t0.209
RayGauss [4]* 0.201 0.132 | 0.167 0.238 0.245 0.242
RayGaussX (ours) 0.183 0.117 | 0.150 0.242 0.242 0.242

Table 6. PSNR, SSIM and LPIPS (with VGG network) scores on the Tanks&Temples [10] and Deep Blending [8] datasets. All
methods are trained and tested on full images. Methods marked * were retrained on an NVIDIA RTX4090.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.
6,7,8,10,11

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Zip-nerf: Anti-aliased grid-
based neural radiance fields. In IEEE/CVF International
Conference on Computer Vision (ICCV), 2023. 6, 7, 8, 10,
11

Zoubin Bi, Yixin Zeng, Chong Zeng, Fan Pei, Xiang Feng,
Kun Zhou, and Hongzhi Wu. Gs3: Efficient relighting with
triple gaussian splatting. In SIGGRAPH Asia 2024 Confer-
ence Papers, 2024. 1

Hugo Blanc, Jean-Emmanuel Deschaud, and Alexis Paljic.
Raygauss: Volumetric gaussian-based ray casting for photo-
realistic novel view synthesis, 2024. 1, 5,6, 7, 8,9, 10, 11
Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision (ECCV), 2022. 9

Danpeng Chen, Hai Li, Weicai Ye, Yifan Wang, Weijian Xie,
Shangjin Zhai, Nan Wang, Haomin Liu, Hujun Bao, and
Guofeng Zhang. Pgsr: Planar-based gaussian splatting for ef-
ficient and high-fidelity surface reconstruction. IEEE Trans-
actions on Visualization and Computer Graphics, pages 1—
12,2024. 1

Zhang Chen, Zhong Li, Liangchen Song, Lele Chen, Jingyi
Yu, Junsong Yuan, and Yi Xu. Neurbf: A neural fields repre-
sentation with adaptive radial basis functions. In IEEE/CVF
International Conference on Computer Vision (ICCV), 2023.
8,9

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. ACM Trans. Graph.,
37(6),2018. 6, 11

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Trans. Graph., 42(4), 2023.
1,5,6,7,8,9, 10, 11

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Transactions on Graphics, 36(4), 2017.
6,11

Zhihao Liang, Qi Zhang, Ying Feng, Ying Shan, and Kui
Jia. Gs-ir: 3d gaussian splatting for inverse rendering.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024. 1

Changkun Liu, Shuai Chen, Yash Sanjay Bhalgat, Siyan HU,
Ming Cheng, Zirui Wang, Victor Adrian Prisacariu, and Tris-
tan Braud. GS-CPR: Efficient camera pose refinement via 3d
gaussian splatting. In The Thirteenth International Confer-
ence on Learning Representations (ICLR), 2025. 1

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In Conference
on Neural Information Processing Systems (NeurlPS), 2020.
6,9

(14]

[15]

[16]

(17]

(18]

(19]

[20]

Hidenobu Matsuki, Riku Murai, Paul H. J. Kelly, and An-
drew J. Davison. Gaussian splatting slam. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2024. 1

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view
synthesis. In European Conference on Computer Vision
(ECCV), 2020. 6, 8, 10

Nicolas Moenne-Loccoz, Ashkan Mirzaei, Or Perel, Ric-
cardo de Lutio, Janick Martinez Esturo, Gavriel State, Sanja
Fidler, Nicholas Sharp, and Zan Gojcic. 3d gaussian ray trac-
ing: Fast tracing of particle scenes. ACM Transactions on
Graphics and SIGGRAPH Asia, 2024. 1,5, 6, 8, 10, 11
Thomas Miiller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4), 2022. 8,
10, 11

Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu,
Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf: Point-
based neural radiance fields. In 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
5428-5438, 2022. 8

Ziyi Yang, Xinyu Gao, Yangtian Sun, Yihua Huang, Xi-
aoyang Lyu, Wen Zhou, Shaohui Jiao, Xiaojuan Qi, and Xi-
aogang Jin. Spec-gaussian: Anisotropic view-dependent ap-
pearance for 3d gaussian splatting. In Conference on Neural
Information Processing Systems (NeurIPS), 2024. 8, 9, 10,
11

Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and
Andreas Geiger. Mip-splatting: Alias-free 3d gaussian splat-
ting. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 19447—
19456, 2024. 8,9, 10, 11

