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Supplementary Material

A. Additional Quantitative Results

A.1. Per-Class IoU
For completeness, we provide per-class IoU scores for
all evaluated methods on the Occ3D-nuScenes dataset in
Tab. A.1. Our proposed GaussianFlowOcc consistently out-
performs all prior methods trained with pseudo labels, both
with and without depth supervision. The most significant
performance gains can be observed in small object classes,
such as motorcycles and traffic cones, but also in other cat-
egories. Notably, our method achieves the best or second
best score across nearly all categories. These results fur-
ther highlight the effectiveness of our Gaussian-based scene
representation and temporal modeling, particularly in han-
dling fine-grained object details that are often challenging
for voxel-based approaches.

A.2. Depth Estimation
To further demonstrate the 3D geometric capabilities of
GaussianFlowOcc, we report depth estimation results on
the nuScenes dataset in Tab. A.2. Our method achieves
competitive performance compared to other state-of-the-
art self-supervised and weakly supervised approaches on
this task. We observe that methods utilizing photomet-
ric losses [15, 20, 70] tend to produce slightly more ac-
curate camera depth predictions than our approach. How-
ever, it is important to note that while our method may yield
marginally lower depth estimation accuracy, it substantially
outperforms these methods in 3D occupancy estimation, un-
derscoring the strength of our model in comprehensive 3D
scene understanding.

A.3. Training with 3D Voxel Labels
Our main contributions, namely the Gaussian representa-
tion and the dynamic object compensation during tempo-
ral Gaussian Splatting, specifically target the weakly super-
vised setting for occupancy estimation. Nonetheless, our
model can be trained using 3D voxel labels similar to pre-
vious methods [29, 30, 53, 72]. Specifically, we apply a
differentiable voxelization to the final Gaussian predictions
(see Sec. 3.7), enabling the computation of a cross-entropy
loss with ground-truth voxel labels for supervised training.
Note that for this experiment, the Temporal Module and
Gaussian Splatting supervision are not used. In Tab. A.3,
we present a comparison on the Occ3D-nuScenes dataset
between our method and established fully supervised ap-
proaches, following the recommended protocol of not using

the camera visibility mask [53]. As shown, our model out-
performs prior methods such as BEVFormer [29] and Occ-
Former [72], while achieving competitive performance with
larger models specifically designed for full supervision, in-
cluding FB-Occ [30] and CTF-Occ [53].

B. Qualitative Results

B.1. Predicted Occupancy
In Fig. B.1, we present qualitative examples of Gaussian-
FlowOcc’s predicted occupancy compared to the ground
truth, visualized from a third-person perspective. These
examples demonstrate our model’s ability to precisely re-
construct the 3D scene geometry using 3D Gaussians, de-
spite the absence of explicit 3D supervision. The Gaussians
align naturally to capture the shapes and details of objects,
effectively representing scene structures without requiring
per-scene optimization. This highlights the flexibility and
efficiency of our approach in modeling complex environ-
ments. Additionally, we provide a set of videos in our
GitHub repository (see Appendix D) showcasing inference
results on full validation scenes:
• scene-0346.mp4 and scene-0790.mp4 visualize the pre-

dicted Gaussians from three perspectives: input camera
view, third-person view, and Bird’s-Eye View.

• scene-0521 gt.mp4 and scene-0925 gt.mp4 compare our
model’s predictions to the ground truth occupancy, both
from a third-person perspective.
These results clearly demonstrate the model’s ability to

accurately represent flat surfaces (e.g., streets and walls),
thin objects (e.g., poles), and small objects (e.g., traffic
cones). Unlike voxel-based methods, which are constrained
by coarse resolution, our approach captures continuous ge-
ometric details with far greater fidelity, enabling a more pre-
cise and realistic 3D scene understanding.

B.2. Rendered Depth and Semantics
In Fig. B.3, we present examples of rendered depth and
semantics obtained by applying Gaussian Splatting to the
3D Gaussians estimated from our trained model. For com-
parison, we also show the pseudo labels used during train-
ing, which are generated by GroundedSAM [45] for seman-
tics and Metric3D [66] for depth. The rendered outputs
demonstrate a high level of detail, with most objects accu-
rately segmented. Notably, even thin structures such as trees
and pedestrians are well-preserved, showcasing the model’s
ability to preserve fine geometric details; something voxel-



Table A.1. Occupancy estimation performance on the Occ3D-nuScenes validation set. The Mode indicates the source of the 2D labels.
C refers to camera images, D refers to usage of pseudo depth. Best performing per column and Mode section in bold, second best in
italics. Methods that use pseudo labels ignore the others and other flat classes.
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SelfOcc [20] C 10.54 - 0.15 0.66 5.46 12.54 0.00 0.80 2.10 0.00 0.00 8.25 55.49 - 26.30 26.54 14.22 5.60
OccNeRF [70] C 10.81 - 0.83 0.82 5.13 12.49 3.50 0.23 3.10 1.84 0.52 3.90 52.62 - 20.81 24.75 18.45 13.19
GaussianOcc [70] C 11.26 - 1.79 5.82 14.58 13.55 1.30 2.82 7.95 9.76 0.56 9.61 44.59 - 20.10 17.58 8.61 10.29
GaussianFlow (Ours) C 14.07 - 6.27 8.54 13.36 12.38 4.92 10.05 6.84 8.75 1.12 10.43 53.40 - 26.44 28.89 10.39 9.33

GaussTR [24] C+D 13.26 - 2.09 5.22 14.07 20.43 5.70 7.08 5.12 3.93 0.92 13.36 39.44 - 15.68 22.89 21.17 21.87
GaussianFlow (Ours) C+D 17.08 - 7.23 9.33 17.55 17.94 4.50 9.32 8.51 10.66 2.0 11.80 63.89 - 31.11 35.12 14.64 12.59

Table A.2. Depth estimation results on nuScenes. The best result is highlighted in bold, second best in italics.

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

SurroundDepth [59] 0.280 4.401 7.467 0.364 0.661 0.844 0.917
SimpleOcc [14] 0.224 3.383 7.165 0.333 0.753 0.877 0.930
OccNeRF [70] 0.202 2.883 6.697 0.319 0.768 0.882 0.931
SelfOcc [20] 0.215 2.743 6.706 0.316 0.753 0.875 0.932
GaussianOcc [70] 0.197 1.846 6.733 0.312 0.746 0.873 0.931

GaussianFlowOcc (Ours) 0.278 2.522 5.232 0.389 0.677 0.826 0.898

based approaches often struggle with due to grid resolution
constraints.

In Fig. B.4, we further illustrate the effect of our Tem-
poral Gaussian Splatting by comparing predicted semantic
segmentation maps across consecutive frames: The first row
shows the rendered semantics for the current input frame.
The second row depicts the segmentation map generated by
rendering into the next frame and using the 3D flow esti-
mated by the Temporal Module to compensate the object
motion. The third row shows the same next-frame projec-
tion but without dynamic object handling — simulating the
approach taken by previous works. The last row provides
the pseudo-semantic labels of the next frame for compari-
son. The comparison clearly reveals the importance of dy-
namic object modeling. Without applying the 3D flow (Row
3), the rendered semantics fail to align with the dynamic ob-
jects in the next frame, as these objects have already moved.
This misalignment would introduce incorrect supervisory
signals if used to compute the loss. In contrast, when ap-
plying the Temporal Module’s flow estimation (Row 2), the
rendered semantics better match the pseudo labels of the
next frame. This demonstrates that our Temporal Module
has successfully learned to approximate object motion, im-
proving the alignment of dynamic objects across frames and
ensuring more accurate supervision during training.

B.3. Long-term Temporal Flow

We further examine the behavior of the Temporal Module by
visualizing the estimated flow over a longer temporal hori-
zon, spanning three frames into the past and future. Fig-
ure B.2 displays rendered semantic maps that illustrate the
qualitative effectiveness of the estimated 3D flow. As is al-
ways the case, the model predicts the 3D Gaussians for the
current frame t given the images of the current frame (along
with the previous frame’s Gaussians for temporal fusion).
The Temporal Module then estimates the motion of objects
across each of the surrounding frames, and the Gaussian
means are updated according to the predicted flow. The fig-
ure compares rendered results using Gaussians moved by
the estimated flow with those using static, unmoved Gaus-
sians. The visualizations demonstrate that the model learns
reasonable object motion that better aligns with the tempo-
ral position of the camera frame, despite not being explicitly
trained with motion or scene flow supervision. The Tem-
poral Module is optimized solely through consistency con-
straints between rendered temporal frames and the Gaus-
sians adjusted by the estimated flow. This temporal consis-
tency reduces artifacts during Temporal Gaussian Splatting,
which is critical for stable training. We note that learning
scene flow in this weakly supervised manner remains chal-
lenging, and errors are still present in practice. Neverthe-
less, as shown in Sec. 4.4.3, leveraging the estimated flow
to improve temporal consistency leads to a notable increase



Table A.3. Occupancy estimation performance on the Occ3D-nuScenes validation set using 3D voxel labels for training. The best
result per column is highlighted in bold, second best in italics.

Method B
ac

kb
on

e

mIoU ot
he

rs

ba
rr

ie
r

bi
cy

cl
e

bu
s

ca
r

co
ns

.v
eh

ic
le

m
ot

or
cy

cl
e

pe
de

st
ri

an

tr
af

fic
co

ne

tr
ai

le
r

tr
uc

k

dr
iv

.s
ur

f.

ot
he

rfl
at

si
de

w
al

k

te
rr

ai
n

m
an

m
ad

e

ve
ge

ta
tio

n

BEVFormer [29] ResNet-101 23.67 5.0 38.8 10.0 34.4 41.1 13.2 16.5 18.2 17.8 18.7 27.7 49.0 27.7 29.1 25.4 15.4 14.5
OccFormer [72] ResNet-101 21.93 5.9 30.3 12.3 34.4 39.2 14.4 16.4 17.2 9.3 13.9 26.4 51.0 31.0 34.7 22.7 6.8 7.0
FB-Occ [30] ResNet-50 27.09 0.0 40.9 21.2 39.2 40.8 20.6 23.8 23.6 25.0 16.6 26.4 59.4 27.6 31.4 29.0 16.7 18.4
CTF-Occ [53] ResNet-101 28.53 8.1 39.3 20.6 38.3 42.2 16.9 24.5 22.7 21.0 23.0 31.1 53.3 33.8 38.0 33.2 20.8 18.0

GaussianFlowOcc (Ours) ResNet-50 25.28 7.6 25.4 13.4 26.0 25.3 15.3 14.2 12.7 10.7 18.2 20.9 76.2 37.4 48.2 47.8 17.3 13.2
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Figure B.1. Qualitative results on the Occ3D-nuScenes dataset. We show the estimated 3D Gaussians, how the predictions look when
voxelized, and the ground truth occupancy. Best viewed when zoomed in.
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Figure B.2. Qualitative results on the Occ3D-nuScenes validation set. Each row depicts the rendered estimated Gaussians when using
the estimated temporal flow to move the Gaussians versus not using the flow, for a time horizon of 1.5s (3 frames) into the past and the
future, respectively. The Gaussians are predicted for the current frame, and then rendered into adjacent frames. It is visible that the model
learns to compensate object motion over multiple frames.
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Figure B.3. Qualitative results on the Occ3D-nuScenes validation set. Each column shows an Input Image, Rendered Depth and
Rendered Semantics generated by using GS to render predicted Gaussians into input cameras (as is done during training). We additionally
show the pseudo labels used during training for the relevant sample.
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Figure B.4. Qualitative results on the Occ3D-nuScenes validation set. Each column shows an input image and the rendered semantics
generated by using GS to render predicted Gaussians into the input camera, as well as rendered semantics when rendering the predictions
into the next frame, one with using our Temporal Module to compensate motion and one without. The last row displays the pseudo labels
of the next frame to show how correct motion compensation should look like.



in occupancy estimation performance.

B.4. Comparison to GaussianOcc
To further demonstrate the benefits of our approach,
we compare the predicted occupancy between Gaussian-
FlowOcc and GaussianOcc [15] in Fig. B.5. In contrast
to GaussianOcc, our model consistently detects and mod-
els thin and small objects like trees, traffic signs and poles
(scene-0916 & scene-0904). In addition, GaussianFlowOcc
suffers a lot less from object bleeding (scene-0557 & scene-
0775). It is visible that our method can much better es-
timate the 3D shape of objects (such as vehicles) avoid-
ing the characteristic depth stretching that often affects
2D-supervised methods [4, 15, 20, 41, 70]. We attribute
this improvement to our use of long-term temporal super-
vision, which enforces geometric consistency over time.
This strategy is only viable with an explicit dynamic scene
model—highlighting the importance of our integrated mo-
tion estimation framework.

C. Voxelization
As explained in the main paper, for benchmarking and com-
parison, we convert the estimated 3D Gaussian distributions
into a voxelized representation. This process begins with
defining a voxel grid over the scene. Each Gaussian distri-
bution is then evaluated at the center of every voxel, where
its opacity and semantic logits are accumulated to determine
the final voxel values. The formulation for this voxelization
is as follows:

vo(p;G) =
P∑
i=1

Gi(p;µi, si, ri, oi)

=

P∑
i=1

exp
(
−1

2
(p− µi)

T
Σ−1

i (p− µi)

)
oi

(12)

vc(p;G) =
P∑
i=1

Gi(p;µi, si, ri, ci)

=

P∑
i=1

exp
(
−1

2
(p− µi)

T
Σ−1

i (p− µi)

)
ci,

(13)
where Σi represents the covariance matrix of each Gaus-
sian, derived from its rotation quaternion and scale param-
eters. To ensure efficiency in handling large numbers of
Gaussians and voxels, we limit the influence of each Gaus-
sian to a fixed local neighborhood. This is justified by the
fact that the contribution of each Gaussian typically decays
rapidly with distance, making it computationally unneces-
sary to evaluate its impact on distant voxels. As explained in
Appendix A.3, this voxelization operation is fully differen-
tiable, which enables training of our model using 3D voxel
labels when available.

D. Source Code
Source code to reproduce the results presented in
the paper is available at https://github.com/
boschresearch/GaussianFlowOcc. Please follow
the instructions in the README.md file to install the repos-
itory and run the code. We provide instructions to train and
evaluate our models on the Occ3D-nuScenes dataset.

https://github.com/boschresearch/GaussianFlowOcc
https://github.com/boschresearch/GaussianFlowOcc
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Figure B.5. Comparing our method to GaussianOcc. We compare the occupancy estimation results on four samples of different
validation scenes of the nuScenes dataset between our method and GaussianOcc [15]. It is visible that our method can better represent thin
and small objects, suffers less from object bleeding and can better estimate the complete 3D shape of scene objects.
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