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Supplementary Material

1. Preliminaries
1.1. 3D Gaussian Splatting
Gaussian Primitives (γn). A 3D scene can be explicitly
represented by a set of anisotropic Gaussian ellipsoids with
positions µn ∈ R3 , covariance matrix Σn ∈ R3×3, color
cn ∈ R3×(k+1)2 for order k, typically represented using
Spherical Harmonic (SH) coefficients and opacity αn ∈
[0, 1]. For each Gaussian point x, it’s 3D position is given as

G(x) = e−
1
2 (x−µn)

⊤ Σ−1
n (x−µn), (1)

The Σn is decomposed into two learnable components
represented by the scaling matrix Sn and a rotation matrix
Rn as follows:

Σn = Rn Sn S
⊤
n R⊤

n . (2)

Therefore any scene can be represented as a collection of
Gaussian primitives where each primitive can be represented
as γn := (µn, Rn, Sn, αn).

Rasterization. The trainable parameters acquired within
the primitive γn can be optimized via the application of the
ensuing differentiable rendering function:

I0(p) =

N∑
n=1

cn α̃n

n−1∏
m=1

(
1− α̃m

)
, (3)

where I0(p) represents the rendered color at pixel p in ren-
dered image I0 and α̃n is calculated from the back-projected
2D Gaussians.

1.2. Latent Video Diffusion Models (LVDMs)
Video Diffusion Model. Latent Video Diffusion Models
consist of a pre-trained encoder E , a U-Net denoiser ϵθ and
a pre-tained decoder D. The diffusion process occurs in the
latent space. Given an image I, it is initially embedded in
the latent space via the frozen encoder E yielding latent
z1:M0 = E

(
x1:M
0

)
by progressively sampling noise from a

Gaussian distribution ϵ ∼ N (0, I) to produce noise zT over
T progressive timesteps. This could be given by the equation:

z1..Mt =
√
αt z

1..M
0 +

√
1− αt ϵ

1..M
t , (4)

where αt ∈ (0, 1), and αt =
∏t

i=1 αi. The denoiser ϵθ is
then trained by minimizing the reconstruction loss:

Ex1..M
0 , y1..M

t , ϵ1..Mt ∼N (0,I)

∥∥∥ϵ1..Mt − ϵθ
(
z1..Mt , t, y

)∥∥∥
2
, (5)

where y is the input conditioning signal. This trained de-
noiser can then be used to generate a sequence of M images
I1...M given a conditioning image I at the test time.

1.3. Training Details
Pseudo View Pre-Processing. To prepare the pseudo views,
we generate 14 frames using MotionCtrl [3] in both the
forward and backward directions and continue to progres-
sively do so until paired pseudo views have been generated
for all the frames corresponding to each particular scene
in RealEstate-10k [4]. For the out-domain KITTI-v2 [5]
dataset, since it follows a stereo format, we generate the
pseudo views for the right camera following the standard
protocol followed by existing works [6, 7] all of which re-
construct the scene based on views obtained from the left
camera and test on novel views from the right camera. We
keep the standard test resolution of 375× 1242 and crop the
outer 5% from all the images following the baseline [7–10]
protocols.
LVDM Details. To denoise the pseudo views, we perform
50 denoising inference steps per image. We follow the same
resolution of 256× 384 in RealEstate-10K to ensure that the
generated images are consistent with the rendered images
from the 3D scene. We keep a FPS of 6 for all our experi-
ments and set speed=1. We don’t utilize the motion bucket id
parameter since it is irrelevant for our use case.

1.4. MLLM for Object Tagging
In this work, we utilize the BLIP2-Flan-T5-XL [1] model
for extracting both partially and fully visible objects. To
ensure that the MLLM adheres to the task in hand, we
leverage a one-shot in-context learning setup [11] which
significantly enhances it’s ability to detect objects. The
prompting regimen which we followed for generating the
object tags is described in Figure 1.

1.5. Qualitative Results
We present additional qualitative results on the RealEstate-
10K [4] and KITTI-v2 [5] datasets shown in Figure 2. As
it can be seen, UAR-Scenes shows robust performance
across a wide variety of indoor and outdoor scenes. Further,
UAR-Scenes is able to produce meaningful explanations
outside of the input image’s view owing to it’s strong extrap-
olation capabilities. Hence, when combined with an existing
3D reconstruction pipeline, we can refine the coarse Gaus-
sians and get more realistic and plausible renderings over a
wide variety of real-world scenes.



"Chair", "Stairs", "floor", "dresser",
"hardwood", "dining"

System Prompt
"You are an object tagging AI assistant"
"When I ask you to list all individual objects in the following
image:"
"Your task is to identify every object, including those partially
visible,"
"and list them as comma-separated list of one-word nouns."
"Respond only with OK if you understand the instructions"

In-context Prompt

"For example,  in the following image, 
when I ask you to list all individual objects 
in the following image:"
"Your Answer: fridge, table, counter."
"Respond only with I UNDERSTAND 
if you understand the example and instructions."

+

Figure 1. Uncertainty Map Pipeline. We pass the pseudo views to the MLLM [1] first using the one shot in-context learning setup as
shown above. This gives the object tags which is then passed onto the open-vocabulary segmentation model LSeg [2]. We then compute the
per-pixel entropy obtained from the segmentation maps to generate the corresponding uncertainty maps U .
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Figure 2. Plausible Generation Results. (a) UAR-Scenes is seamlessly able to adapt to indoor and outdoor scenes while preserving
realistic and plausible quality in areas where Flash3D fails. In some cases as in the 2nd row, our method produces plausible explanations
for regions outside of the input image’s view but which may not align with the ground truth image. The FID metric is crucial to assess
the effectiveness of our method in such cases.(b) UAR-Scenes similarly generalizes to KITTI as well showing robust performance in
previously unseen scenarios.
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Figure 3. Additional Qualitative Results. UAR-Scenes notably improves in those scenarios where the baseline (Flash3D) falters in all
three tested cases (in-domain, out-domain & in-the-wild) as the camera moves further/rotates away from the source, i.e. unable to keep
geometry & texture (rows 1, 2 & 5), with artifacts in unknown/occluded regions (row 3 & last row).
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