—Supplementary Material—
ScanEdit: Hierarchically-Guided Functional 3D Scan Editing

Mohamed El Amine Boudjoghra!

Ivan Laptev? Angela Dai!

Technical University of Munich
2Mohamed Bin Zayed University of Artificial Intelligence

1. Completing missing geometry

Figure 1. Missing geometry completion results

To complete missing geometry after editing the scene,
we use a heuristic plane-based method. Our goal is to keep
the region empty after removing objects, unlike 2D inpaint-
ing approaches like Infusion [1], which tend to hallucinate
new content in the edited areas. Instead of inpainting, we
assume that removed objects rest on a support surface (e.g.,
table or floor). We project the object’s points onto this sur-
face and use Delaunay triangulation estimate mesh faces for
the projected points. This helps preserve continuity of the
support plane and adjacent walls, avoiding visual holes in
the reconstructed scene.

Let Pgy; be the set of 3D points belonging to the object,
and 7y, the support plane. We project each point p € Poy;
onto 7, by computing:

o

Pproj = P — (n pfc))n

where n is the normal of 7y, and c is a point on the
plane. The set of projected points is then triangulated using
Delaunay triangulation to reconstruct the surface geometry.

For color prediction, we adopt a mirror reflection strat-
egy based on scene geometry rather than the plane. Specif-
ically, for each point q on the completed geometry, we first
find its nearest neighbor py, € P in the original scene:

Pan = arg min la—pll2

We then reflect q across py, to obtain a mirrored location
I

q:

q =2pm—q
Finally, we assign to q the color of the nearest point to
q’ in the original point cloud:

Color(q) = Color <arg min ||p — q/||2>
pPEP

where P is the set of all original scene points with known
color values.

This approach allows us to generate plausible surface
completions and assign color in a geometry-aware way,
avoiding artificial content and ensuring visual consistency
with the original scene.

In order to filter out noise and get a smooth color for the
completed region, we apply a median filter.

2. Results with machine generated class agnos-
tic masks

We use predicted masks from Mask3D [2], trained on the
ScanNet++ training set. Figure 2 shows results on two
scenes: one from the ScanNet++ validation set and the other
from the Replica dataset. We start by predicting instance
masks using Mask3D and apply non-maximum suppression
(NMS) to remove overlapping ones. Then, we run con-
nected components on the remaining parts of the 3D scene
to extract other instances that Mask3D fail to detect. For
walls and floors, we use plane segmentation—identifying
planar regions in the point cloud. The floor is selected as
the plane with the highest upward-facing normal (along the
z-axis) with lowest height, and the ceiling as the one with
the lowest z orientation and highest height, while walls are
selected as the planes perpendicular to the floor. To annotate
the masks, we render 2D masks onto the undistorted DSLR
images and use LLAMA Vision to predict node attributes
like class name, color, and so on.

*I am ocurrently wiping the
whiteboard, could you bring me

"Please arrange some warm=—colored
chairs for a presentation on the

something To use for disposal.® large whiteboard for 4 guests.®

*Arrange some chairs for a
group discussion,"

Figure 2. Editing results of our method with instance segmentation masks generated by Mask3D [2], and trained on ScanNet++ [4] training
set. We show the results on two scenes, one from Replica [3] and ScanNet++ [4] validation set.

100 Unary Perceptual Study

—— InBound t
—+— CLIP Score 1
—— NoFloat T

20| #—e—"—ov

%

—e— Adherence to Text Instruction T
+— Scene Aesthetics T
0]

150 150 200 250 3% 3%0
Number of Objects in Scene

(/5 score)

160 150 200 250
Number of Objects in Scene

Figure 3. Scene complexity study. This figure shows how our
method performs across 8 scenes with varying numbers of ob-
jects, ranging from 69 to 306. Our approach consistently main-
tains high performance on both geometric and semantic metrics,
even as scene complexity increases.

3. Effect of maximum number of target loca-
tions on the performance

Table 1 shows the effect of limiting the maximum number
of target locations considered by the planner when trans-
forming an object. The results indicate that the best perfor-
mance is achieved when the LLM is allowed to dynamically
determine the number of target locations based on the struc-
ture of the target graph—such as relevant support objects or
available support surfaces.

Table 1. Ablation over # of samples; 50% subset evaluation

Samples | NoFloat (%) InBound (%) ColVol (m?)] PloU 1
1 77.94 94.55 0.1681 0.34
3 85.91 96.27 0.1611 0.33
5 79.88 93.14 0.1766 0.36
LLM controlled (Ours) 83.56 99.48 0.1528 0.32

4. Additional Perceptual Study Details

In our perceptual study, we conducted both a binary and
a unary perceptual evaluation to assess the quality of edited
3D scenes. The unary perceptual study required participants
to score each generated scene on two key criteria: Adher-
ence to Instruction and Layout Quality. Participants were
presented with a single edited 3D scene and asked to rate
it on a scale from 1 (Strongly Disagree) to 5 (Strongly
Agree) for each criterion. Adherence to Instruction eval-
uates how well the edited scene aligns with the given text
instruction, ensuring that modifications accurately reflect
the specified changes. Layout Quality assesses the overall
spatial arrangement and positioning of objects, considering
factors such as coherence, realism, and usability within the
scene. This evaluation provides a fine-grained assessment
of different methods’ ability to generate high-quality and
instruction-consistent scene modifications.

5. Geometric Evaluation Metric Details

5.1. Collision metric (ColVol)

First, we construct a bounding volume hierarchy with depth
of 8 for each object in the scene to approximate its shape
using bounding boxes at multiple levels (We show in Fig. 6
the visualization of bounding volumes hierarchy at different
levels). We estimate the colliding volumes between pairs of
objects using the sum of intersections of bounding volumes
at level 8 in the bounding volume hierarchy.

Rearangement
"create a reading area with a
table in the center for serving

coffee and a brown sofa
for seating"

Interaction 1

"Arrange 3 chairs in 3 rows
for a presentation on
the screen”

\ I \ \\
Figure 4. We show in this figure that our method naturally supports interactive editing. Information about the edited object can be passed
in as context along with the updated scene graph to help refine the output further. We also demonstrate support for adding new objects:

given an asset to insert, we scale it to match the typical height of its category (as suggested by an LLM). For object removal, the LLM is
instructed to flag the corresponding node in the graph during the planning stage.

5.2. In boundry metric (InBound)

For all objects that are moved in the edited version of the
scene, we report the percentage of points which are inside
the flour contour. For this, we compute the signed distance
using the floor contour points and floor contour normals.

5.3. Percentage of non floating objects (NoFloat)

For each object that has been moved, we check if it is sup-
ported by a support surface or not with 1cm threshlod. An
object is considered floating if it is elevated more than 1cm
distance from the nearest support surface. In NoFloat met-
ric we report the percentage of objects that are not floating.

6. Estimating graph edges with 3D heuristics

6.1. Estimating ‘on top of’ support surface relation

We assign each object in the graph nodes NV to the closest
support surface, provided that the difference between the
object’s min-imum height and the surface is less than 5 cm.

Addition

"Please include this mug for the
guest to drink coffee"

Interaction 2

"Rearrange the two nearest edited
chairs to the screen to face each other with
distance 1meters between each other" radius circle for a discussion“{

Removal
"Please remove the
edited armchair"

= .
Interaction 3

"Arrange the 3 edited
chairs in a 1 meter

/

\\‘

6.2. Estimating ‘against wall’ relation

An object o; is defined as against a wall o; if its front nor-
mal F; aligns with the front normal F’;— of the wall and the
minimum distance between the wall and the object is less
than Scm.

6.3. Estimating ‘facing’ relation

An object o; is defined to be ’facing’ another object o; if the

front normal F; of o; is aligned with the directional vector
d = c,; — co;, Where ¢, is the center of object o;.

7. Subgraph identification

In the subgraph identification phase, we use an LLM, &,
to reduce the set of objects to only relevant classes using
prompt 7.1. Then, within these selected classes, we retrieve
relevant nodes based on attributes like color, material, and
description using prompt 7.2. Next, we identify the key
edges with prompt 7.3 that correspond to spatial instruc-
tions—for example, an instruction like ~organize the top of
the cabinet” refers to the “on top of” edge, with the cabinet
serving as its reference node.

7.1. Class pruning prompt

*I am near the exit, bring me
something That 1 can sit on

fo tie my shoe,"
15

“Create a seating area for a
lecture on the whiteboard.*

*Clear The top of the
nightstands.*

Figure 5. Additional results with ground truth masks on additional scenes. We follow the editing by our planar geometry completion

method.

BVH at level 0

Figure 6. We show in this figure the bounding volumes of the
instance object table at different levels in the bounding volume hi-
erarchy BVH. We compute the colliding volumes between objects

at level 8 as the sum of intersections in cube meters m?>.

Relevant class selection prompt:

You will be given a list of class names and your
role is to locate the classes of interest.
The classes of interest are objects to be
moved and potential target locations. The
classes don’t have to be explicitly mentioned

in the prompt; you must infer them from the

context, especially the target locations
where objects should be moved.

Among the following classes <objects>
list_of class_names</objects>, which ones are
relevant to "{instruction}"?

Please give only the necessary class names to
execute the task and make sure to return them
in the tag:
<objects>[place list of objects here]</objects>.

Tips:

- Relevant classes do not necessarily need to be
explicitly mentioned in the instruction. You
should analyze the instruction and determine
the most logical target location based on its

context. For example, if the instruction is
to "clear the inside of the fridge," and the
class list includes a kitchen counter, it
should also be considered. The kitchen
counter is the most logical place to place
the items, as it fits the context of the task

- You must consider only class requirements; don’
t try to look for objects based on spatial
relations like "close to" or "on top of." For

example, "empty the inside of the fridge"
means that the relevant classes are fridge

and a potential location where to place the
items, like a kitchen counter or table.

— Your role is to identify the most relevant
classes based solely on semantics, without
considering spatial relationships. For
example, in the instruction "Move objects
from inside the cabinet," your focus should
be on the cabinet and a suitable target
surface for placing the objects, such as a
table or the floor. Do not attempt to
determine which specific objects are inside
the cabinet from the given list.

Important:

— The classes you return should be in the
provided list of class objects; don’t
hallucinate any new class names.

- For every object class to be moved, you must
return the most logical target class where it

is going to be placed relative to either "
close to" or "on top of" one of its support
surfaces.

Examples of objects relevent to instruction:
{Examples}

Very important: return classes from the provided

list, don’t hallucinte classes outside of it.

If the instruction indicates prular objects

you ust retrieve the closest from the set <
objects>{list_of_ class_names}</objects>.

— The final output must be in XML format:

7.2. Instance retrieval with node attributes

You are a helpful assistant responsible for
filtering out irrelevant objects based on
some color, material, or size that might be
mentioned in a given instruction. You will
receive a list of objects, each with an ID,
color, and material. Your task is to identify

and return the object IDs that align with
the instruction. If the instruction does not
specify any attributes for the desired
objects, return all object IDs.

Additionally, some objects serve as target
locations for placing other objects according
to the instruction. If no specific
attributes are mentioned for these target
objects, they should be retained.

If no color or material are requested in the
instructions return all IDs.

Note: please select object that need to be moved
as well as target objects.

Objects list with their object ids, class name,
list of major colors, list of materials:

{Objects_details}

Instruction is
{Input_instruction}

Please end your thinking with <relevant_ids>][
place the list of ids which align with the
instruction here]</relevant_ids>

Tips:
- Relevant classes do not necessarily need to
be explicitly mentioned in the
instruction. You should analyze the
instruction and determine the most
logical target location based on its
context. For example, if the instruction
is to "clear the inside of the fridge,"
and the class list includes a kitchen
counter, it should also be considered.
The kitchen counter is the most logical
place to place the items, as it fits the
context of the task.
— You must consider only semantic attributes
like color, material, and specific object
characteristics as filtering
requirements, don’t try to look for
objects based on spatial relations like
close to or on top of. For example 'empty
the inside of the fridge’ means that the
relevent classes are fridge and

potential location where to place the
items like kitchen counter or table.

Very Important:

- Don’t filter any object out unless a color
or material attribute is requested.

- Your task is to return the IDs of objects
strictly from the provided list. For each
object selected, you must include at
least one target object ID from the list
to indicate its placement relative to
another object (e.g., near the door, on
the table, or on the floor).

Examples of objects relevent to instruction:
{Examples}

7.3. Identifying relevent edges

You are a Helpful Assistant. Your task is to
determine how an object should be retrieved
based on the given instructions. Do not try
to make a plan for placing the objects. You
must focus only on understanding whether
retrieval involves relations or not.
Guideline for Identifying the Object to Move

and Retrieval Type

Identify the Object to Move
Look for action verbs like move,
place, put to determine what is
being acted upon.
Example: "Move the chair." (Chair is
the object to move).

Check for Relations
If a prepositional phrase (e.g., next
to the table) describes the
destination, it is retrieval
without relations ("Move the
chair next to the table.").

If the phrase describes the current
position, it is retrieval with
relations ("Move the chair that
is next to the table.").

Determine Retrieval Type
Without Relations: The object is
retrieved by intrinsic properties
(e.g., color, type).
With Relations: The object is
retrieved using another object as
a reference.

Edge Cases
If no reference is mentioned, assume
retrieval without relations.
Multiple objects should be checked
for independent or dependent
relationships.

Your role is to analyze retrieval type, not
to decide where to place objects.

You will receive a list of objects, each with
details such as their IDs, colors, and

materials. The instruction provided may ask
for objects relative to others in this list.
Your task is to analyze the instruction and
identify the objects that can serve as
references to locate the target objects.

For example:

If the instruction is: "Could you please
empty the kitchen counter, then move
items from the fridge to the kitchen
counter?", the fridge has a relation "on
top" with all possible surfaces, and the
kitchen counter is also referenced as "on

top." In this case, return the relevant
object IDs based on these relationships.

Objects list with their object ids, class name,
list of major colors, list of materials:

{Objects_details}

Instruction is
{Input_instruction}

Please end your thinking with the following xm
format
Y Vvxml
<objects>
<object>
<id>[please the object id here]</id>
<surface_ids>[please place the desired
surface ids here seperated by a comma
]</surface_ids>
<relation>[please place the required
relations here seperated by comma,
you must choose from ‘on top’, '
facing’, ’'against wall’]</relation>
</object>
</objects>

Important regarding surface IDs: A surface is the
area where objects can be placed in an
object, each object has surfaces with several
IDs from 0 and up, the surface with the
lowest elevation has the highest ID.
Example for surfaces: if there are three surfaces
with ids 0,1,2,3 the lowest id corresponds
to the top surface in this case ID 0 where
the highest ID corresponded to the lowest
surface in this case 3.

Examples that can help you understanding if the
instruction requires retrieving with spatial
constraints or not:

{Examples}

Hint how to address this task assigned to you:
First, evaluate the instruction to determine
whether any objects need to be retrieved in
relation to others. If no objects are to be
retrieved in relation to others, return an
empty XML tag as follows: xml<objects></
objects>.

8. Prompts for planner

In the planning phase, we generate first a plan where the
LLM U generates a detailed plan while considering differ-
ent target locations which define the hypotheses for moving
each object, then it selects the best one while taking into ac-
count physical plausibility in support surfaces (max height
does not accommodate the object to be moved or the surface
is full).

8.1. Prompt for generating a plan

You will be given a list of objects with their
ids colors and materials, you have to suggest
a plan on how to place objects to execute
the instruction.

Important analysis before planning how objects
should be moved:
Analyze the instruction and keep the movement
of objects to the minimum, while
insuring the instruction is satisfied.
For example if the goal is to create a
seating area to whatch TV, the TV should
not be moved.

Objects list with their object ids, class name,
list of major colors, list of materials:

{Objects_details}

Instruction is
{Input_instruction}

Important: enphasis on objects that should not be
moved in the plan, an example is " place the
chairs to watch TV" the TV should remain

untouched and the chairs should be placed in
front of it while facing it.

Please end your thinking with <placement_plan>|

place your detailed plan by specifying object
ids and class names here]</placement_plan>

Important: enphasis on objects that should not be
moved in the plan, an example is " place the
chairs to watch TV" "arrange chairs for

presentation on a screen" the TV and screen
should remain untouched and the chairs should
be placed in front of it while facing it.

{Support_surfaces_details}

Important when suggesting the plan:
- please suggest a target location for every
object you want to move relative to other
objects or the floor, even if the
instruction is vague.
For example if an instruction says to
clear a table, you must identify what
objects are on the table and suggest
new locations for these objects
- First analyze all potential target location
, and place object relative to the most
logical targets. Example, an instruction
"move the chair’ has multiple targets but
the most logical one is close to a table

- If the target location is support object,

please make sure to suggest which surface
among the object surfaces it should go
to in the plan

- Some objects are better stacked on each
other, for example papers and boxes
shoulkd be stacked on each other if they
are to be organized. where the largest
one with dx,dy is the first.

— The object level instruction must refer to
an object (if desired to be placed close
to it) or one of its surfaces (if desired

to be placed on a surface) that exists
in the list of objects.

- Make the plan with natural language only,
don’t suggest to place objects in
specific coordinates.

- It is very important to pay attension to
objects coordinates, since there are
multiple objects with same functionality
but different sizes. e.g. a large plant
cannot be placed on top of a table, but a

midsized or small plant one can be which
gives a better vibe to the space.

When should you stack objects on top of each
other:

- Some objects like papers or boxes are
better stacked on top of each other, in
this case the plan should be:

- place largest box on some surface 0 of
another object or floor.

- place second smallest box on the placed
box.

- and so on

- If three objects a (largest),b(smallest),c(
medium) are to be stacked on top of each
other a should be on a surface floor, or
table, etc as it is the base of the stack
, ¢ should be on surface ID 0 of a, and b

should be on surface ID 0 of c.

When to use the coordinates:

- Each objects has x,y coordinates use them
to figure out far or close objects if
mentioned in the instruction. It is
strict to not include any coorcinates in
the final placement plan.

How to handle instructions with few details:

- Try to make a plan that can be physically
plausible, for example placing 10 sofas
for a presentation can not be done in one

row, you have to place them in multiple
rows in this case 3 rows would be good.

8.2. Prompt for converting the plan into hierarchi-
cal graph

You will be given a list of objects with their
ids colors and materials and a plan to place
these object. Your role is to return the
logical dependency between objects and format

the placement of objects in a hierarchical

manner starting from the floor. Please
strictly follow the placement plan

Important analysis before planning how objects
should be moved:
Analyze the instruction and keep the movement
of objects to the minimum, while
insuring the instruction is satisfied,
pay attention to the placement plan, some
objects are best to be kept unchouched
you need to reflect that in the object
level instruction in the hierarchy. For
example if the goal is to create a
seating area to whatch TV, the TV should
not be moved. In this case the TV will
nest the objects for seating, while
having the instruction "keep the TV
untouched".

Placement plan: ’'place the table with id 10 near
the door id 12 and a bottle with id 1 on top
of the table (surface ID 0 of the table) with

id 10, and the chair id 50 facing the table

’

Hierarchical Structure for Object Placement

The hierarchy follows a nested dependency
model, where objects are placed relative
to their parent objects. This ensures
spatial constraints are logically
maintained.

1. Root Level (Floor)

The floor is the base of the environment,
meaning all objects are ultimately
placed on it.

The floor itself remains static and
untouched, serving as the
foundational layer for all placements

2. First Nested Level (Door)

The door (ID 12) is placed directly on
the floor, meaning it is positioned
independently.

Since the door is static like the floor,
it does not move or act as a
container for other objects.

3. Second Nested Level (Table)

The table (ID 10) is placed near the door
(ID 12).
This means the table’s position is
spatially related to the door but not
contained within it.
Since the table is a movable object, its
placement depends on the door’s
position.

4. Third Nested Level (Chair & Surface)

The chair (ID 50) is placed facing the
table (ID 10), making it dependent on

the table for its orientation.

The table s surface (ID 0) is an implicit
subcomponent of the table and serves
as a placement area for smaller

objects.

While the surface is not a separate

object, it acts as a reference point
for placing items on the table.

5. Fourth Nested Level (Bottle)

The bottle (ID 1) is placed on top of the
table (specifically, surface ID 0).
Since the surface belongs to the table,
the bottle is indirectly dependent on
the table s placement.

Purpose of the Hierarchy

The structure enforces a logical dependency
between objects. For example:
The bottle s placement depends on the
table.
The table s placement depends on the door

The chair and surface placement depends
on the table.
The door s placement depends on the floor

This hierarchical representation reflects
real-world relationships and ensures
clarity in placement instructions.

How to approach this:

- You need to figure out the group center and
what objects but be placed relative to the
group centers.

— The group centers are placed relative to the
floor, while the group memebers are placed
relative to the group centers.

— If an object is placed in relation to other
object it should be nested in it.

Final format (You must follow this output format)

xml :“
<object>
<name>floor</name>
<id>floor_id</id>
<instruction>leave the floor untouched as
floors cannot be moved</instruction>
<object>
<name>door</name>
<id>12</id>
<instruction>leave the door untouched
</instruction>
<object>
<name>table</name>
<id>10</id>
<instruction>place the table
close to the door with id
12</instruction>
<object>
<name>surface</name>

<id>0</id>
<instruction>Leave surface ID
0 untouched as it is
part of the table</
instruction>
<object>
<name>bottle</name>
<id>1</id>
<instruction>place
the bottle on top
of the surface
with ID 0</
instruction>
</object>
</object>
<object>
<name>chair</name>
<id>50</id>
<instruction>place the chair
id 50 in front of the
table, facing the table</

instruction>
</object>
</object>
</object>
</object>

Extremely Important for the nesting:
Even if an object doesn’t move it must nest
related objects.

Now please proceed with the following:

Placement plan
{placement_plan}

Denependency plan:
{dependency_plan}

Structured xml hierarchy:
Please proceed with the step by step thinking
then end it with xml output here
Important notes:
— If an object is placed in relation to other
object (on top of, close to, near etc)
it should be directly nested in it.

— Please nest the desired surface in its
correspoding object parent if exists in
the placement plan.

- An object is nested only if it should
remain untouched or placed relative to
the parent, but not moved from the parent

Example when not to nest: the cup
should not be nested in the

fridge in 'move the cup from
the fridge’

Example when to nest: the cup
should be nested in surface
id 1 and surface id 1 should
be nested in the fridge in '
place the cup in surface 1 in

the fridge’

Important regarding object level instructions:

— Add the word ’untouched’ in the instruction
if the object is a surface or should not
be moved. Surface instruction should

always be ’leave surface untouched’

Very important:

- You must return the structure that enforces
a logical dependency (use the dependancy
plan in order to figure out which object
is nested in which) between objects to

figure out which object relates to which
object before generating the xml nests

- If an object is not explecitly mentioned to
be moved in the placement plan you

should leave it untouched, you your role
is to structure the placement plan in a
nested structure following the dependency
plan

Extremely important note: You must move only
the objects that are mentioned to be
moved in the instruction. For example '
move glass to the fridge’ means the
fridge must stay in place

9. Prompt for hierarchical object placement

You will be given a reference object and a list
of objects that you need to place relative to
a reference object. Your role is to think
step by step and seggest new locations,
orientations, and constraints for the list of
objects.

Each object has to be placed following its
instruction, you must suggest 3D
coordinate for the base of the object, an

orientation of the object, and a list of
constraints with respect to the
reference object.

The representation of the reference object:
— The reference object is represented
with
1. Its base coordinate, which
represents the 3D coordinate of
the object with the minimum
elevation (z) in meters and
center in x and y.
2. Its dimensions which represent the
height (following the z axis),
the width(following the x axis),
the depth(following the y axis)
in meters
3. Its orientation, which refers to
the orientation of the object
around the z axis, in degrees.
4. Its surfaces which can be used for
placing objects, each surface
has an ID where id 0 represents
the surface with the highest
elevation, the elevation is in
meters.

5. List of objects that are on top of
the object

The representation of the List of object to
be placed relative to the reference
object {Parent_object_name} id {
Parent_object_id}:

1. its base coordinate, which
represents the 3D coordinate of
the object with the minimum
elevation (z) in meters and
center in x=0 and y=0.

2. Its orientation, which refers to
the orientation of the object
around the z axis, in degrees.

The possible list of constraints with respect
to the reference object {

Parent_object_name} id {Parent_object_id}

are:

- in_surface : this constraints concerns
only instructions that require
placing objects inside or on top of a

reference object, if the instruction

requires placing an object on top,
that means the surface ID is 0 since
it is the one with the highest
elevation

- facing: This constraint concerns
objects which should be facing the
reference object in a natural setting
, for example a chair should be
facing a referebce object whiteboaard

Important details when reporting the final
location and orientation:

- Don’t perform the math operation
instead report the formula with
values and operations to get the new
location or orientation. The allowed
operations are :x: for multiplication
, /: for division, -: for minus, +:
for summation, cos: for cosine
function, sin: for sin function.
angles should be in degrees.

Hint on relations between objects:

- If an object is facing another, its
orientation should be 180 degrees
minus the orientation of the other
object

- if an object is facing the same
direction as another, both should
have the same orientation

Important details on the reference object’s {

Parent_object_name} id {Parent_object_id}

orientation and location:

- the reference object is oriented
towards (meaning its front) the
positive direction of the x-axis. And

its base coordinate is located near
the origin.

Output format:

Please end your step by step thinking
with the following xml which
summarizes the new locations , new
orientations and list of constraints
of objects with respect to the
reference object relative to the
reference object {Parent_object_name}

id {Parent_object_id}:
xml ‘'
<objects>
<object>
<id>[please place the object ID here
1<id>
<name>[please place the object name
here] <name>
<new_base_coordinate>[please place
here the new base coordinate of
the object]</new_base_coordinate>
<new_orientation>[please place here
the new orientation the object]</
new_orientation>
<constraints>
<facing>[please mention here
wheather the object should be
facing the reference object
{Parent_object_name} id {
Parent_object_id} or not,
answer with yes or nol]<facing
>
<in_surface>[If the object should
be in one of the surfaces
place the surface ID here, if
not place None]<in_surface>
<distanace_to_reference>[please
place the distance to the
reference object here]<
distanace_to_reference>
</constraints>
<object>
<objects>

Reference Object:
{parent_object_details}

List of Objects to be placed with their
instructions:
{objects_to_be_placed}

{floor_details}

Now please proceed with your suggested new
coordinates and orientations, taking into
account that the reference object x
center and y center are both 0,0 and this
is similar to its base coordinate. It is
also important to note that all objects
are represented with base coordinate
which is the center of the object in x
and y and minimum elevation in z.

Important: the front of the reference object
is in the positive x axis, thus if an
object should be in front of it it must
be placed at x>0 and y that is bounded.

Important: you must use place the objects
elevation (z axis) at the floor level if
the object should be on the floor.

Important regarding in_surface constraint: if

the reference object is a surface of an
object, please put the ID of the surface
(which is a number, don’t put something
like fridge’s surface or table’s surface)
in this constraint.

Very important: Pay attention to the
instruction for each object, if an object
should not be moved please don’t include
it in the xml list. If no object should
be moved return an empty xml <objects></
objects>

Left, right, front, and back sides
conventions:
Left side with respect to the reference
object is : y < 0
Right side with respect to the reference
object is : y > 0
Front side with respect to the reference

object is : x > 0
Back side with respect to the reference
object is : x < 0

Very important when placing objects against
walls or other objects:

If an object is placed against a wall or
another object <facing> should be no
and the orientation of the object to
be place should be the same as the
reference object

If an object is against the wall, its x
should be half the dx dimension of
the object and y can range from -
dy_wall/2 to dy_wall/2

Very important for the <facing> constraint
which are with respect to the reference
object {Parent_object_name} id {
Parent_object_id}:

If an object should be facing the same
direction as the reference object {
Parent_object_name} id {
Parent_object_id} <facing> constraint

should be set to no

Example (helpful for reasoning only):

- place chairs with respect to
another reference object chair
for a role that requires them to
be in the same direction like
guest watching TV, means that <
facing> is no

- place chairs with respect to
another reference object TV for a

role that requires them to be in
the same direction like guest
watching TV, means that <facing>
is yes

References

(1]

(2]

(3]

(4]

Zhiheng Liu, Hao Ouyang, Qiuyu Wang, Ka Leong Cheng, Jie
Xiao, Kai Zhu, Nan Xue, Yu Liu, Yujun Shen, and Yang Cao.
Infusion: Inpainting 3d gaussians via learning depth comple-
tion from diffusion prior. arXiv preprint arXiv:2404.11613,
2024. 1

Jonas Schult, Francis Engelmann, Alexander Hermans, Or
Litany, Siyu Tang, and Bastian Leibe. Mask3d: Mask trans-
former for 3d semantic instance segmentation. In 2023
IEEE International Conference on Robotics and Automation
(ICRA), pages 8216-8223. IEEE, 2023. 1, 2

Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J Engel, Raul Mur-Artal, Carl
Ren, Shobhit Verma, et al. The replica dataset: A digital
replica of indoor spaces. arXiv preprint arXiv:1906.05797,
2019. 2

Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Niefner, and
Angela Dai. Scannet++: A high-fidelity dataset of 3d indoor
scenes. In Proceedings of the International Conference on
Computer Vision (ICCV), 2023. 2

	Completing missing geometry
	Results with machine generated class agnostic masks
	Effect of maximum number of target locations on the performance
	Additional Perceptual Study Details
	Geometric Evaluation Metric Details
	Collision metric (ColVol)
	In boundry metric (InBound)
	Percentage of non floating objects (NoFloat)

	Estimating graph edges with 3D heuristics
	Estimating `on top of' support surface relation
	Estimating `against wall' relation
	Estimating `facing' relation

	Subgraph identification
	Class pruning prompt
	Instance retrieval with node attributes
	Identifying relevent edges

	Prompts for planner
	Prompt for generating a plan
	Prompt for converting the plan into hierarchical graph

	Prompt for hierarchical object placement

