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6. Overview

In this supplementary material, we first provide an extended
theoretical discussion in section 7 that grounds LeGrad’s
design choices and motivates our gradient-based explain-
ability approach. Section 8 details the implementation as-
pects, including pre-trained weights, baseline methodolo-
gies, and necessary adaptations for applying explainability
methods to Vision Transformers (ViT) with different archi-
tectures. An expanded evaluation of LeGrad’s performance
across various models and datasets is documented in sec-
tion 9. Section 9.3 offers a visual representation of the
perturbation benchmarks utilized to assess the efficacy of
various explainability approaches. Section 10 further ex-
plores the gradient distribution across layers for different
models and datasets. Furthermore, section 11 conducts a
sanity check using the FunnyBirds Co-12 setup to evaluate
the robustness of our explainability method. Lastly, sec-
tion 12 includes a disclaimer on the use of personal and
human subject data within our research.

7. Extended Theoretical Discussion

This appendix provides a comprehensive theoretical analy-
sis that grounds LeGrad’s design choices and motivates our
gradient-based explainability approach. We include a de-
tailed derivation of the gradient signals, an analysis of reg-
ister tokens, a discussion of intermediate representations,
a formal treatment of layer-wise integration, a comparison
with Layer-wise Relevance Propagation (LRP), and addi-
tional supporting proofs and empirical validations.

7.1. Mathematical Derivation of Gradient Signals

Let s denote the activation corresponding to a particular
class (or prompt) computed from the decision module of
the Vision Transformer, and let A be the attention map de-
rived at a given layer. Considering a small perturbation �A
in the attention map, a first-order Taylor expansion yields:

s(A+ �A) ⇡ s(A) + h @s
@A

, �Ai. (8)

Here, the gradient @s

@A
quantifies the local sensitivity of the

score s with respect to changes in A. This first-order ap-
proximation supports the claim that the magnitude of @s

@A

serves as a proxy for the influence of each component of
the attention map on the final decision. In our method,
gradients are computed via automatic differentiation during

back-propagation, providing both a mathematically rigor-
ous and computationally efficient estimate of feature impor-
tance. Positive values in @s

@A
indicate that an increase in the

corresponding attention weight would lead to a stronger ac-
tivation of the target class, making them natural candidates
for attribution.

7.2. In-Depth Analysis of Register Tokens

Vision Transformer architectures routinely employ tokens
that function as “registers” to stabilize internal computa-
tions. Although these tokens frequently acquire high raw
attention weights, our analysis shows that their correspond-
ing gradients, @s

@A
, remain negligible. Theoretically, this

behavior can be attributed to the role of register tokens in
maintaining consistent internal representations rather than
directly affecting the semantic decision. Formally, if Areg
represents the subset of attention weights corresponding to
register tokens, then under typical conditions:

k @s

@Areg
s(A)k ⇡ 0. (9)

Empirical observations confirm that, in contrast to semanti-
cally informative patch tokens, register tokens exhibit near-
zero positive gradients. This insight justifies our choice to
discard negative gradient values using a ReLU operation
and to rely on the positive gradient signal for filtering out
spurious contributions.

7.3. Extended Discussion on Intermediate Repre-

sentations

Transformers produce hierarchical representations by pro-
gressively refining the input through multiple layers. In-
stead of solely considering the final output, LeGrad com-
putes “proto-decision” signals sl at each layer l. Early lay-
ers capture coarse, low-level features, while later layers en-
code semantically rich information. Let Zl represent the
intermediate tokens at layer l, and define sl = f(Zl) as the
activation computed from these tokens. By evaluating the
gradient rAlsl at each layer, we obtain layer-specific in-
sights that reflect the evolution of feature importance along
the network’s depth. This decoupling permits the isolation
of contributions from each layer before they are affected
by downstream transformations, thereby mitigating the risk
of confounding effects that might occur if attribution were
computed solely at the final output.



7.4. Comprehensive Layer-Wise Integration

The aggregation of sensitivity measures across layers is de-
signed to capture the cumulative influence of each token
over the entire transformation pathway from input to predic-
tion. Let L denote the total number of layers, and consider
the per-layer gradient rAlsl at each stage l. We define the
aggregated importance as:

Eagg =
1

L

LX

l=1

rAlsl. (10)

This summation is interpreted as a discrete approximation
to integrating the continuous evolution of sensitivity over
the model’s computational path. Such an integration of-
fers two key advantages. First, it preserves the contributions
from tokens that may exert influence at early layers yet be-
come attenuated in later stages. Second, by averaging local
sensitivities across all layers, it provides a robust, holistic
measure of token importance. Sensitivity analysis confirms
that this approach yields heatmaps that accurately reflect the
internal decision dynamics of the network.

7.5. Detailed Comparison with Layer-wise Rele-

vance Propagation

Layer-wise Relevance Propagation (LRP) attributes a
model’s output to its input features via a recursive backward
pass that conserves total relevance. Our gradient-based ap-
proach shares several theoretical tenets with LRP:
• Computational efficiency: A single backward pass com-

putes the required gradients without the need for iterative,
layer-specific propagation rules.

• Adaptability: The gradient approach naturally extends
to transformer architectures, where attention mechanisms
are the primary vehicles for information flow.

• Theoretical consistency: By focusing on first-order sen-
sitivities, our method aligns with the core principles of
LRP while avoiding some of its implementation complex-
ities.

While LRP employs bespoke propagation rules for each
layer type, our method leverages automatic differentiation
to compute rAs directly. Moreover, the conservation of
relevance inherent in LRP is implicitly addressed when ag-
gregating contributions from all layers, mirroring LRP’s
goal of complete attribution through a more straightforward
computational pipeline.

7.6. Additional Proofs and Empirical Validations

To further substantiate our theoretical insights, we present
additional proofs and empirical validations. First, under
mild regularity conditions, one can formally prove that rAs
serves as an unbiased estimator for the local sensitivity in
the vicinity of the given attention map. Second, empiri-
cal analyses on benchmark datasets demonstrate that the

proposed gradient-based heatmaps correlate strongly with
human-interpretable regions, as measured by quantitative
metrics such as localization accuracy and correlation with
ground-truth segmentation masks. Finally, ablation studies
reveal that the exclusion of register tokens and the aggrega-
tion of gradients from intermediate representations consis-
tently enhance the fidelity of the explanations.

7.7. Conclusion

The analysis presented in this appendix reinforces the de-
sign choices underlying LeGrad. By basing our approach on
a first-order sensitivity analysis, addressing the role of regis-
ter tokens, leveraging intermediate representations, and in-
tegrating contributions across layers, we propose a robust
and computationally efficient framework for transformer
explainability. The connection to established methods like
LRP further situates our approach within the broader con-
text of deep learning interpretability research—ensuring
both theoretical rigor and practical utility.

This extended discussion complements the brief theoret-
ical overview provided in the main paper and underpins the
empirical and practical advances embodied by LeGrad.

8. Implementation details

8.1. LeGrad for Attentional Pooler

In place of the more conventional use of the [CLS] token,
some ViT uses an attentional pooler. Attention Pooling, as
e.g. used in SigLIP [42] employs an multi-head attention
layer [25, 40] with a learnable query token qpool 2 Rd. This
token interacts with the final layer patch tokens to produce
the pooled representation z̄AttnPool:

z̄AttnPool = softmax
✓
qpool · (WKZL)Tp

d

◆
(WV Z

L),

(11)
where WK ,WV 2 Rd⇥d are learnable projection matrices.

LeGrad can easily be adapted to such models. Indeed,
for ViTs using an attentional pooler (e.g. SigLIP [42]),
a slight modification is made to compute the activation
sl at each layer. We apply the attentional pooler module
Attnpool to each intermediate representation Zl to obtain a
pooled query ql 2 Rd. The activation sl with respect to the
desired class c is then computed as sl = ql·C:,c 2 R. Instead
of considering the self-attention map, we use the attention
map of the attentional pooler, denoted Apool 2 Rh⇥1⇥n.
Thus, for every layer l, rAl = @s

l

@A
l
pool

.

8.2. Pretrained weights

The experiments conducted in our study leverage a suite of
models with varying capacities, including ViT-B/16, ViT-
L/14, ViT-H/14, and ViT-bigG/14. These models are ini-
tialized with pretrained weights from the OpenCLIP library



respectively identified by: "laion2b s34b b88k",
"laion2b s32b b82k", "laion2b s32b b79k",
and "laion2b s39b b160k". For the SigLIP method,
we utilize the ViT-B/16 model equipped with the "webl"
weights. For the ”gradient distribution over layers”
graphs, Figure 6, we also used the pretrained weights from
OpenAI [30] and MetaCLIP [39].

8.3. Detailed Description of Baselines

In this section, we provide an overview of the baseline
methods against which our proposed approach is compared.

GradCAM: While originally designed for convolutional
neural networks (CNNs), GradCAM can be adapted for Vi-
sion Transformers (ViTs) by treating the tokens as activa-
tions. To compute the GradCAM explainability map for a
given activation s, we calculate the gradient of s with re-
spect to the token dimensions. The gradients are aggregated
across all tokens and serve as weights to quantify the contri-
bution of each token dimension. Formally, for intermediate
tokens Zl = {zl0, zl1, . . . , zln} 2 R(n+1)⇥d, the GradCAM
map EGradCAM is defined as:

w =
1

n

nX

i=0

@s

@zl
i

2 Rd⇥1⇥1

ÊGradCAM =

 
1

d

dX

k=1

wd ⇤ Zl

1:,d

!+

2 Rn

EGradCAM = norm(resize(ÊGradCAM )) 2 RW⇥H ,
(12)

with d representing the token dimension, ⇤ denoting
element-wise multiplication, and the superscript + the
ReLU operation. We empirically determined that applying
GradCAM to layer 8 of ViT-B/16 yields optimal results.

AttentionCAM: This method extends the principles of
GradCAM to ViTs by utilizing the attention mechanism
within the transformer’s architecture. AttentionCAM lever-
ages the gradient signal to weight the attention maps in the
self-attention layers. Specifically, for the last block’s self-
attention maps AL, the AttentionCAM map EAttnCAM is
computed as:

rAL =
@s

@AL
2 Rh⇥(n+1)⇥(n+1)

w =
1

n2

X

i,j

rAL

:,i,j 2 Rh

ÊAttnCAM =
hX

p

�
wp ⇤AL

p,:,:

�
2 R(n+1)⇥(n+1)

EAttnCAM = norm(resize(ÊAttnCAM )0,1:)

, (13)

where h denotes the number of heads in the self-attention
mechanism.

Raw Attention: This baseline considers the attention
maps from the last layer, focusing on the weights associated
with the [CLS] token. The attention heads are averaged and
the resulting explainability map is normalized. The Raw
Attention map EAttn is formalized as:

ÊAttn = AL

:,0,1: 2 Rh⇥1⇥n

EAttn = norm(resize(
1

h

hX

k=1

(ÊAttn)k)) 2 RW⇥H

(14)
These baselines provide a comprehensive set of com-

parative measures to evaluate the efficacy of our proposed
method in the context of explainability for ViTs.

8.4. Details on adapting GradCAM to ViT

As GradCAM was designed for CNNs without [CLS] to-
kens, we tried both alternatives, i.e. including/excluding
[CLS] token, Tab. 6 showcases a comparison of includ-
ing/excluding the [CLS] token in the gradient computation
on ViT-B. We observe that including the [CLS] token result
in a marginal improvement. Overall, we would consider
both options valid. GradCAM was originally designed for
CNNs, therefore needs some adaptation to work for ViT. In
an effort to consolidate the baselines used in this paper, we
tried different configurations. One of which is whether or
not include the [CLS] token in the gradient computation or
not. We note that both alternatives are aligned with the orig-
inal design of the GradCAM and that this choice is a matter
of implementation.

We found that including the [CLS] token was producing
better numbers, we therefore used that choice. Indeed, Ta-
ble 6 shows the results on all the benchmark for GradCAM
w/ and w/o the [CLS] token included in the gradient com-
putation and shows that not including it translate in a slight
decrease. Moreover, including the [CLS] token in the gra-
dient computation is the option that makes more sense, as it
is the [CLS] that is used to compute the similarity with the
text query. We also tried to use the layer aggregation used
in LeGrad for GradCAM and provide an evaluation in Table
6. We apply the same layer aggregation as in LeGrad (see
7) showing a slight improvement on the V7 benchmark. We
attribute the only modest improvement to the fact that layers
in ViT have different activation value ranges. LeGrad uses
only gradients to produce layer-wise explainability maps,
thereby avoiding this issue.

8.5. Adaptation of Baseline Methods to Attentional

Pooler

In the main manuscript, we introduced our novel method,
LeGrad, and its application to Vision Transformers (ViTs)
with attentional poolers. Here, we provide supplementary



mIoU(V7) Neg "(INet) Pos #(INet)
GradCAM w/ [CLS] 8.72 45.26 22.86
GradCAM w/o [CLS] 8.18 41.29 24.20
Multi-layer w/ [CLS] 9.51 45.31 22.54

LeGrad 48.38 52.27 13.97

Table 6. Evaluation of GradCAM with and without [CLS] token as well as with layer aggregation as proposed in eqaution 7 on ViT-B/16
for open-vocabulary detection(V7) and perturbation (ImageNet).

details on how LeGrad and other baseline methods were
adapted ViTs employing attentional poolers:
CheferCAM: Following the original paper [10] that intro-
duces CheferCAM, we considered the attentional pooler as
an instance of a ”decoder transformer” and applied the rel-
evancy update rules described in equation (10) of that pa-
per [10], (following the example of DETR). Since the at-
tentional pooler has no skip connection we adapted the rel-
evancy update rule not to consider the skip connection.
AttentionCAM: For AttentionCAM, instead of using the
attention maps of the last layer, we use the attention maps of
the attentional pooler. We found this variant to work better.
Raw Attention: Similarly, the Raw Attention baseline was
adjusted by substituting the attention maps from the last
self-attention layer with those from the attentional pooler.
Other Baselines: For the remaining baseline methods, no
alterations were necessary. These methods were inherently
compatible with the attentional pooler, and thus could be
applied directly without any further adaptation.

The adaptations described above ensure that each base-
line method is appropriately tailored to the ViTs with at-
tentional poolers, allowing for a fair comparison with our
proposed LeGrad method.

8.6. Mitigation of sensitivity to irrelevant regions:

We observe that for all evaluated explainability methods,
SigLIP displays high activations in image regions corre-
sponding to the background. These activations appeared to
be invariant to the input, regardless of the gradient computa-
tion’s basis, these regions were consistently highlighted. To
address this issue, we computed the explainability map for
a non-informative prompt, specifically "a photo of".
We then leveraged this map to suppress the irrelevant ac-
tivations.

Namely, for an activation s under examination, we nul-
lify any location where the activation exceeds a predefined
threshold (set at 0.8) in the map generated for the dummy
prompt. Formally, let Es denote the explainability map for
activation s, and Eempty represent the map for the prompt
"a photo of". The correction procedure is defined as
follows:

Es

Eempty>th
= 0, (15)

where th = 0.8. This method effectively addresses the is-
sue without resorting to external data on the image content.
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Figure 7. SOTA Qualitative Comparison: visual comparison of
different explainability methods on images from OpenImagesV7.

8.7. Qualitative Comparison to SOTA

Here, we present a qualitative analysis of the explainability
maps generated by LeGrad in comparison to other SOTA
methods. The results are depicted in Figures 7 & 11, which
includes a diverse set of explainability approaches such
as gradient-based methods (e.g., CheferCAM, GradCAM),
attention-based methods (e.g., Raw Attention weights visu-
alization, Rollout), and methods that integrate intermediate
visual representations with text prompts (e.g., TextSpan).
Our observations indicate that raw attention visualizations



ImageNet OV7
Negative Positive

Method Predicted " Target " Predicted # Target # p-mIoU "
rollout 47.81 47.81 25.74 25.74 0.07
Raw attention 44.42 44.42 25.85 25.85 0.09
GradCAM 41.25 44.42 35.10 33.50 6.97
AttentionCAM 45.62 45.71 45.01 44.92 0.19
CheferCAM 47.12 49.13 22.35 21.15 1.94
LeGrad 50.08 51.67 18.48 17.55 25.40

Table 7. SOTA comparison on SigLIP-B/16: Comparison of explainability methods on perturbation-based tasks on ImageNet-val and
open-vocabulary localization on OpenImagesV7 (OV7).

L/14 H/14
ReLU All Layers Negative" Positive# Negative" Positive#

7 7 47.81 20.80 57.57 21.73
3 7 49.32 19.95 59.55 19.50
7 3 52.01 16.80 60.28 18.26
3 3 54.48 15.23 61.72 18.26

Table 8. Ablation study: ”ReLU” corresponds to whether or not negative gradients are set to 0. ”All layers” corresponds to whether or
not the intermediate tokens are used to compute the gradient for every layer or if only the features from the last layer are used. Numbers
are the AUC score for the perturbation base benchmark using the target class to compute the explainability map.

tend to highlight a few specific pixels with high intensity,
often associated with the background rather than the object
of interest. This pattern, consistent with findings in the liter-
ature [6, 12], suggests that certain tokens disproportionately
capture attention weights. Consequently, methods that rely
on raw attention weights to construct explainability maps,
such as CheferCAM, exhibit similar artifacts. For instance,
in the localization of ”Basket” (Figure 7, row 1), the basket
is marginally accentuated amidst a predominance of noisy.
In contrast, for LeGrad, the presence of uniform noisy ac-
tivations across different prompts results in minimal gradi-
ents for these regions, effectively filtering them out from
the final heatmaps. This characteristic enables LeGrad to
produce more focused and relevant visual explanations.

9. Additional results

9.1. Performance on SigLIP

To assess LeGrad’s adaptability to non-standard ViT ar-
chitectures, we evaluate its performance on SigLIP-B/16,
a vision-language model with an attentional pooler, with
results presented in Table 7 The results underscore the
methods performance across both negative and posi-
tive perturbation-based benchmarks. Notably, in the
open-vocabulary benchmark on OpenImagesV7, LeGrad
achieved a p-mIoU of 25.4, significantly surpassing Grad-
CAM’s 7.0 p-mIoU, the next best method. These findings
affirm the versatility of LeGrad, demonstrating its robust

applicability to various pooling mechanisms within Vision
Transformers. Further details on the methodological adap-
tations of LeGrad and other evaluated methods for compat-
ibility with SigLIP are provided in the annex.

9.2. Image Classification

In this section, we extend our evaluation of the proposed
LeGrad method to Vision Transformers (ViTs) that have
been trained on the ImageNet dataset for the task of image
classification. The results of this evaluation are presented
in Table 9, also providing a comparison with other state-of-
the-art explainability methods.

It shows that LeGrad achieves superior performance on
the perturbation-based benchmark, particularly in scenarios
involving positive perturbations.

Another observation is that even elementary explainabil-
ity approaches, such as examining the raw attention maps
from the final attention layer of the ViT, demonstrate com-
petitive results. In fact, these basic methods surpass more
complex ones like GradCAM (achieving an AUC of 53.1
versus 43.0 for negative perturbations).

9.3. Pertubation example

Figure 8 illustrates the perturbation-based benchmark of
Section 4.1 in the main paper. Given the explainability map
generated by the explainability method, for the negative (re-
spectively positive) we progressively remove the most im-



Negative Positive
Method Predicted " Target " Predicted # Target #
rollout [1] 53.10 53.10 20.06 20.06
Raw attention 45.55 45.55 24.01 24.01
GradCAM [33] 43.17 42.97 26.89 26.99
AttentionCAM [10] 41.53 42.03 33.54 34.05
Trans. Attrib. [9] 54.19 55.09 17.01 16.36
Partial-LRP [38] 50.28 50.29 19.82 19.80
CheferCAM [10] 54.68 55.70 17.30 16.75
LeGrad 54.72 56.43 15.20 14.13

Table 9. SOTA comparison on ViT-B/16 on perturbation-based tasks on ImageNet-val for a ViT trained on ImageNet.

Neg. Slope Neg AUC (") Pos AUC (#)
0 (ReLU) 54.48 15.23
0.1 54.33 15.39
0.5 53.25 15.84
0.7 52.96 16.33
1 (no ReLU) 52.01 16.80

Table 10. Ablation of smoothly transitioning from ReLU
(slope=0) to no ReLU (slope=1) by replacing the ReLU operation
in LeGrad by a LeakyReLU with varying slope factor.

portant (respectively the least important) part of the image.
We then look at the decline in the model accuracy.

9.3.1. Ablations of ReLU and Layer Aggregation

We finally scrutinize the design choices underpinning
LeGrad in Table 8. Specifically, we investigate the effect of

discarding negative gradients before aggregating
layer-specific explainability maps vai ReLU, as well as the
implications of leveraging intermediate feature tokens Zl

to compute gradients for each respective layer. We use the
framework of the perturbation benchmark explained in

Section 4.1 and both ViT-L/14 and ViT-H/14 models. The
results indicate that the omission of either component

induces decline in performance, thereby affirming the role
these elements play in the architecture of the method.

Additionally, in Table 10, we conducted a new experiment
with LeakyReLU with varying slope factor, hence

smoothly transitioning from ReLU (slope=0) to no ReLU
(slope=1). These results show a performance decline as
more negative signal is incorporated, supporting ReLU’s

use in our aggregation scheme.

10. Gradient Distribution over Layers

Figures 9 & 10 extend the ”gradient distribution over
Layers” analysis conducted Section 4.6 to more backbone

size and more set of weights .
In Figures 12 & 13 & 14 & 15 & 16 & 17 & 18 provide the

Method CSDC PC DC D SD TS
GradCAM 0.75 0.67 0.68 0.91 0.7 0.48

Rollout 0.86 0.8 0.82 0.8 0.76 0.
Chefer LRP 0.91 0.92 0.89 0.9 0.74 0.95

LeGrad 0.90 0.83 0.92 1. 0.77 0.97

Table 11. Evaluation of ViT-B/16 on the FunnyBirds Co-12 setup

gradient distribution over layer independetly for each class
in PascalVOC. We observe that for most models and

classes, the layers contributing the most were typically
located towards the end of the ViT. An interesting

exception to this trend was observed for the ’person’ class,
which exhibited a higher sensitivity to the middle layers

across all model sizes and weight sets. We hypothesize that
this is due to the high frequency of the ’person’ class in the
training data, enabling the ViT to identify the object early
in the layer sequence, thereby triggering the activation in

the middle layers.
Furthermore, we note that the most activated layer varied
significantly depending on the class and the model. This
variability was observed even between two models of the
same size, such as ViT-L(openai) and ViT-L(metaclip).
This observation underscores the rationale behind the

LeGrad method’s approach of utilizing multiple layers,
hence alleviating the need to select a specific layer, as the

optimal choice would differ from model to model.

11. Sanity Check

The Co-12 recipe[28] is a set of 12 properties for
evaluating the explanation quality of explainability method

for machine learing models. These properties provide a
comprehensive framework for assessing how well one can
explain the decision-making process of a model. In [23]

proposed a dataset, called FunnyBirds, to evaluate
explainability methods for visual models.

As a sanity check for the proposed LeGrad method, we
follow the authors guidelines and evaluate on the provided

ViT-B/161 using LeGrad, showing improvement over
gradient-based methods while being on par with LRP.
1
https://github.com/visinf/funnybirds-framework

https://github.com/visinf/funnybirds-framework
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Figure 8. Example of positive/negative perturbations: illustration of positive and negative perturbations used in the perturbation-based
benchmark. (Top row): positive perturbation. Bottom row: negative perturbations

Figure 9. Gradient distribution over layers on PascalVOC for different
pretrained ViT-L/14.

Figure 10. Gradient distribution over layers on PascalVOC for differ-
ent pretrained ViT-B/16.

12. Personal and human subjects data

We acknowledge the use of datasets such as ImageNet and
OpenImagesV7, which contain images sourced from the

internet, potentially without the consent of the individuals
depicted. We recognize that the VL models used in this

study were trained on the LAION-2B dataset, which may
include sensitive content. We emphasize the importance of

ethical considerations in the use of such data.
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Figure 11. Qualitative Comparison to SOTA: visual comparison of different explainability methods on images from OpenImagesV7



Figure 12. Gradient Distribution over Layers for different classes dataset for Laion2B-ViT-B/16.



Figure 13. Gradient Distribution over Layers for different classes dataset for OpenAI-ViT-B/16.



Figure 14. Gradient Distribution over Layers for different classes dataset for Laion400M-ViT-B/16.



Figure 15. Gradient Distribution over Layers for different classes dataset for MetaCLIP-ViT-B/16.



Figure 16. Gradient Distribution over Layers for different classes dataset for OpenAI-ViT-L/14.



Figure 17. Gradient Distribution over Layers for different classes dataset for Laion400M-ViT-L/14.



Figure 18. Gradient Distribution over Layers for different classes dataset for Laion2B-ViT-H/14.
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