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7. Hyperparameters
Architecture We use DINOv2-L with registers [23, 41] as
our image encoder and use N = 12 cross-attention-only
transformer blocks (cf . Fig. 4).

Pre-Training We train our network for 4.4M map code it-
erations (resulting in 440 000 mapping and 440 000 query
iterations for the head, because we are only updating the
head in every 10th iteration, cf . Sec. 4.2) on 8 A100 GPUs
with a scene batch size Nspb = 200 and patch batch size
Npps = 512. Each map code is optimized between 6000
and 10000 iterations with Nqstandby = 5000. To focus op-
timization on solvable patches we found it beneficial to only
use the lowest 30% losses in each batch. We use AdamW
for map codes and network weights with a learning rate of
0.0001 without learning rate scheduler. During pre-training
we use a map code size of NC = 1024.

Novel Scene Mapping We use slightly varying parame-
ters for our 5 minute and 25 minute configuration following
manual tuning on validation scenes. In the 5 minute setup a
maximum buffer size of 4M patches, 1000 iterations, and a
batch size of 40960 is used. In the 25 minute setup we spend
more time budget on the buffer creation using 8M patches,
increase the number of iterations to 4000, and increase the
batch size to 51200. In both cases, AdamW with a one cycle
learning rate schedule with maximum learning rate 0.002 is
used. We use NC = 4096 resulting in 12 MB maps (full
precision). During optimization we apply dropout on the
image features with a dropout probability of 10%.

8. Datasets
Every combination of mapping images yields a unique map
code after optimization and every other image in a se-
quence can potentially aid in improving the generalization
performance of the coordinate regressor. Therefore, we
randomly generate multiple mapping-query configurations
per scene taking into account specific dataset character-
istics. For most datasets, sequences are ordered in time
which gives a strong clue for which images are likely co-
visible. Therefore, we follow an interval-based configura-
tion scheme where the sorted image sequence is split into
disjoint subsets serving as the mapping and query portion.
For unsorted datasets we adjust parameters such that empir-
ically most query views should still be solvable while also
including challenging views with little visual overlap.

We follow two sampling schemes: an interspersed one,
in which mapping and query intervals of varying length

Table 6. Image encoder analysis. Accuracy, in terms of median
position error (in cm), on 7Scenes, 12Scenes, Indoor-6 and RIO10
(top) with per-scene results for 7Scenes (bottom) for different im-
age encoders. Best and second best highlighted.

Static Dynamic

7S 12S I6 R10

ACE w/ ACE enc. 1.1 0.7 11.0 358.4
ACE w/ DINOv2 enc. (“DINO-ACE”) 7.2 1.9 5.6 83.8
ACE-G w/ ACE enc. (Ours) 1.3 0.7 11.3 144.5
ACE-G w/ DINOv2 enc. (Ours) 4.6 1.2 4.5 41.1

Chess Fire Heads Off. Pump. RK Stairs

ACE w/ ACE enc. 0.6 0.8 0.6 1.1 1.2 0.8 2.8
ACE w/ DINOv2 enc. (“DINO-ACE”) 0.9 1.4 0.8 1.4 1.8 1.1 43.9
ACE-G w/ ACE enc. (Ours) 0.6 0.8 0.6 1.0 1.4 0.8 3.8
ACE-G w/ DINOv2 enc. (Ours) 1.0 1.5 0.9 1.4 1.8 1.1 24.5

alternate throughout the sequence; and a query-mapping-
query scheme, where a mapping interval of varying length
is surrounded by two query intervals of varying length.

For ARKitScenes and ScanNet++, we first sample a
mapping interval, then find covisible image pairs given the
image pair information published by [63] and sample a short
interval around the image known to be covisible.

Beyond this interval-based sampling, we randomly
switch mapping and query sequences for the MapFree
dataset and randomly mirror scenes. Finally, a random ro-
tation is applied every time a new mapping-query configu-
ration is added to the active scenes.

Figure 9 visualizes a mapping-query split for each in-
cluded dataset.

9. Additional Experiments

9.1. Image Encoder
To better understand the interplay of our pre-training and
the image encoder, we report additional results of ACE
and ACE-G paired with ACE’s fully-convolutional im-
age encoder and DINOv2 in Tab. 6. In addition to the
datasets reported in the main paper, we include 7Scenes
[53] and 12Scenes [58]. Datasets can be grouped into
static (7Scenes, 12Scenes) and dynamic (Indoor-6, RIO10),
depending on whether there are environment and lighting
changes between mapping and query images.

In summary, ACE-G with DINOv2 achieves the most
balanced results across datasets. The accuracy of ACE and



(a) ScanNet [22] (b) ScanNet++ [67]

(c) ARKitScenes [6] (d) MapFree [2]

(e) BlendedMVG [66] (f) WildRGBD [64]

Figure 9. Mapping-query splits used for training. The 3D points show the accumulated scene coordinates from all mapping views. The
inset shows projected ground-truth points in a query view. Note that overlap between mapping points and query view varies significantly.

ACE-G depends to some extent on the image features being
used. The ACE features works well on static scenes that
require little generalization but performs poorly in dynamic
scenes. DINOv2 features are less precise compared to ACE
features on static scenes, but generalize much better in dy-
namic scenes.

To further understand the differences on 7Scenes, we
also include per-scene results on that dataset (Tab. 6). The
performance drop is caused by one scene (Stairs), and can

be attributed to DINOv2 features, not to ACE-G’s architec-
ture or pre-training.

Notably, ACE-G’s architecture and pre-training consis-
tently improves when building on-top of DINOv2 features.
The strong performance of ACE on static scenes, comes at
the cost of worse performance on dynamic datasets. We
believe that the strong performance of ACE-G in dynamic
conditions is highly relevant in practice when query images
are taken long after an environment has been mapped.



Table 7. Fine-tuning results. Accuracy under (20◦, 20 cm) error
threshold on the validation splits of the training datasets. Fine-
tuning on different dataset combinations can specialize the model
for specific conditions.

(%) SN SN++ ARK MF BMVG WR

Baseline 63.5 55.5 56.0 47.1 40.6 36.7
Indoor +1.9 +2.6 +1.2 -3.4 -7.5 -9.2

Outdoor -8.7 -10.6 -9.6 +0.4 +3.4 -9.0
MapFree -8.5 -10.1 -9.1 +0.2 -7.1 -8.6

9.2. Fine-Tuning
In Tab. 7 we further show validation results for three spe-
cialized models fine-tuned on a subset of datasets for 1M it-
erations after 4M iterations of pre-training on all 6 datasets:
in one case we fine-tune only on indoor datasets, in a second
case only on outdoor datasets, and in the final case only on
the MapFree dataset. Interestingly, the latter models bene-
fit less from the fine-tuning, which might suggest that the
two outdoor training datasets (MapFree and BlendedMVG)
are not sufficient for the variety of scenes present in these
datasets.


