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This supplementary material provides extended analyses
and implementation details to support our proposed CLOT
paper. It includes sensitivity studies on key parameters,
complexity comparisons with ASOT, and additional abla-
tions to isolate the effect of each component. We also pro-
vide full hyperparameter settings and extra qualitative re-
sults across all datasets to further illustrate the advantages
of our approach.

1. Sensitivity Analysis
Effect of K ′. K ′ controls the capacity of the decoder, that
is the maximum number of predicted segments, the actual
number is learned. We set K ′ = K + nseg, where K is the
number of action classes and nseg ∈ Z is a dataset-specific
offset. See the results for nseg ∈ [−6,+6] in Fig. 1 (first
three tables). The straight lines indicate the SOTA. CLOT
achieves equal or superior performance in F1 and mIoU
across nearly all nseg in BF, 50S(Mid), 50S(Eval), and
DA. For MoF, CLOT consistently outperforms or equals the
SOTA ∀nseg in BF, 50S (Mid), and YTI. In particular, neg-
ative nseg can help reduce over-segmentation in presence of
background or very unbalanced action durations.

Effect of M . We apply SWD exclusively to the initial
frame-to-action matching, as this is where raw visual fea-
tures are directly compared to action prototypes. At this
stage, SW best captures the underlying geometric structure
and distributional structure by projecting features onto mul-
tiple one-dimensional subspaces. Later stages use refined
embeddings where this structure is no longer preserved,
making SWD less meaningful. We use M = P × d pro-
jections, where d is the feature dimension and with M ∈
[50, 100] typically sufficient for convergence (see [1, 2]).
As shown in Fig. 1, we observe stable performance across
P ∈ [1, 6].

2. Complexity
CLOT introduces a multi-level cyclic learning mechanism,
solving three OT problems instead of one, which could lead

to increased computational costs. However, to maintain ef-
ficiency, we incorporate an entropy-regularized solver, sim-
ilar to ASOT [4], which accelerates the OT optimization
process while maintaining accuracy. This approach lever-
ages sparsity structures in the cost matrices, enabling faster
convergence with a computational complexity of O(NK)
per iteration. As a result, CLOT remains scalable to
large datasets, efficiently handling videos with thousands
of frames while keeping processing times competitive. The
overall runtime remains comparable to ASOT, with only a
moderate increase in memory usage due to additional at-
tention layers in the decoder. Tab. 1 shows the GFLOPs
and per-batch training time, using flop counter in Py-
Torch. Despite CLOT using 3 Optimal Transport (OT)
problems and adding architectural complexity, it increases
Floating Point Operations (FLOPs) and runtime moderately.

Time (s) BF YTI 50S (Eval) 50S (Mid) DA

ASOT 2.2 24.7 110.7 27.8 36.0 86.8
CLOT 3.7 48.4 117.7 36.9 62.8 125.8

Table 1. GigaFLOPs and the average training runtime.

3. Additional Ablation Study
Parallel decoding vs. autoregressive decoding To as-
sess the influence of decoding strategies on segmentation
quality, we compare our parallel decoder with its autore-
gressive counterpart, similar to [3] across both activity-level
and video-level evaluations (Tab 2). The parallel design,
aligned with CLOT’s architecture, avoids error propagation
by predicting segments simultaneously rather than sequen-
tially. Results indicate consistent improvements across all
datasets and metrics, with notable gains in F1 and mIoU,
especially for short or overlapping actions, highlighting the
benefit of structured segment-level modelling over tempo-
rally fragile autoregressive predictions.

Comparison to ASOT. ASOT corresponds to our 1st
stage (frame-to-action) without SWD and FD. However, it
is not meaningful to treat SWD or FD as independent add-
ons to ASOT, as our method redefines the OT formulation
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Figure 1. Sensitivity analysis for MoF, IoU and F1 on nseg and and MoF on P .
DA (◦, solid), FS (Mid) (□, dashed), FS (Eval) (△, dotted), BF (♢, dash-dot), and YTI (▽, custom dash).

Eval Decoder Breakfast YTI 50Salads (Mid) 50Salads (Eval) DA

MoF F1 mIoU MoF F1 mIoU MoF F1 mIoU MoF F1 mIoU MoF F1 mIoU

Activity Autoregressive 55.6 35.2 16.6 51.5 34.4 20.6 52.3 44.3 30.2 55.9 55.0 32.7 35.3 25.3 13.0
Parallel 60.1 40.1 18.5 54.4 36.7 23.4 50.6 46.6 31.4 59.4 63.2 38.8 68.8 72.6 48.1

Video Autoregressive 63.1 53.5 34.9 68.7 60.5 44.2 66.7 60.0 41.2 61.3 62.4 36.4 42.6 30.1 15.8
Parallel 66.3 55.9 37.1 69.3 60.8 48.2 69.4 63.8 45.0 64.6 69.7 42.5 73.5 75.2 52.4

Table 2. Comparison between Autoregressive and Parallel decoders evaluated at activity and video level across the four datasets.

ASOT ASOT+SWD ASOT+FD CLOT-SWD&FD CLOT
mIoU (%)MoF (%) F1 (%)

BF FSMid FSEval BF FSMid FSEval BF FSMid FSEval

Figure 2. Comparative results, isolating the impact of each com-
ponent.

itself by integrating both components to enhance represen-
tations prior to transport resolution. These are not plug-and-
play modules but part of a coherent architectural redesign.
In Fig. 2, both components bring measurable benefits over
ASOT, while their absence in CLOT underscores the critical
role they play in overall performance.

4. Implementation Details

Hyperparameter Settings. In Tab. 3, we provide a sum-
mary of the hyperparameter settings used in our experi-
ments. The values are categorized based on their role in the
encoder, decoder, and optimal transport (OT) components
of the model.

Computing Resources. All experiments were conducted
on a single NVIDIA GeForce RTX 3090 GPU (24GB)
with CUDA 12.3, providing the necessary computational
resources for training and evaluation.

5. Additional Qualitative Results
For a more comprehensive analysis, we present additional
qualitative results from all four datasets in Fig. 3. These
visualizations illustrate how CLOT effectively refines seg-
mentation boundaries compared to ASOT and other base-
line methods.

References
[1] Ishan Deshpande, Yuan-Ting Hu, Ruoyu Sun, Ayis Pyrros,

Nasir Siddiqui, Sanmi Koyejo, Zhizhen Zhao, David Forsyth,
and Alexander G. Schwing. Max-sliced wasserstein distance
and its use for gans. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2019. 1

[2] Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland
Badeau, and Gustavo Rohde. Generalized sliced wasserstein
distances. Advances in Neural Information Processing Sys-
tems (NeurIPS), 32, 2019. 1

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in Neural
Information Processing Systems (NeurIPS), 30, 2017. 1

[4] Ming Xu and Stephen Gould. Temporally consistent unbal-
anced optimal transport for unsupervised action segmentation.
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2024. 1, 3



ASOT

Ours

GT

DA:

ASOT

Ours

GT

BF:

ASOT

Ours

GT

BF:

ASOT

Ours

GT

YTI:

ASOT

Ours

GT

ASOT

Ours

GT

50S (Eval):

ASOT

Ours

GT

BF:

Figure 3. Qualitative results. We display the ground-truth (GT), the results of CLOT (Ours), and ASOT [4]. Results from different
datasets and activities for comparison.

Hyperparameter Value
Learning Rate 0.001 (BF and DA), 0.005 (YTI and 50S)
Batch Size 2
Epochs 15(BF), 20 (YTI), 30(50S), 70 (DA)
Optimizer Adam
Loss Function Cross-Entropy
Dropout Rate 0.5
Weight Decay 1e−4

Activation Function ReLU
Decoder: heads 8
Decoder: dropout 0.5(BF), 0.2(YTI), 0.1(50S-Mid), 0.2(50S-Eval), 0.5(DA)
Decoder: Num of layer 2(BF), 2(YTI), 1(50S-Mid), 4(50S-Eval), 3(DA)
nseg 0(BF), -6(YTI), 2(50S-Mid), -6(50S-Eval), 0(DA)
P 2(BF), 2(YTI), 1(50S-Mid), 4(50S-Eval), 3(DA)
ρ 01.5(BF), 0.2(YTI), 0.1(50S-Mid), 0.1(50S-Eval), 0.25(DA)
λ 0.1(BF), 0.08(YTI), 0.11(50S-Mid), 0.2(50S-Eval), 0.16(DA)
Nr 0.04(BF), 0.02(YTI), 0.1(50S-Mid), 0.1(50S-Eval), 0.25(DA)

Table 3. Hyperparameter Settings
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