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1. Ablation Studies
To confirm the effectiveness of our approach, we conduct
ablation studies regarding the training data generation pro-
cess temporal matching, and our proposed event representa-
tion MCTS. Additionally, we report the performance of our
investigated network architectures.

1.1. Training Data
We compare our proposed temporal matching approach
with the state-of-the-art method homographic adaptation in-
troduced for frame-based keypoint detection and descrip-
tion [5] in Table 1. SuperEvent trained with temporal

1Technical University of Munich,
{yannick.burkhardt, simon.k.schaefer }@tum.de
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matching data exclusively outperforms models trained with
homographic adaptation data. Also, combining both ap-
proaches results does not improve model performance.

Temporal matching employs real data exclusively with-
out distortions in the event representation due to augmenta-
tions. We suspect that this advantage improves the model’s
event data comprehension.

1.2. Input Representation
Next, we compare our MCTS representation to time sur-
faces [15] and its variant Tencode [13] in Table 2. As
shown in [13], with ∆t = 0.01 s, the Tencode model
achieves superior performance to the one using time sur-
faces. However, since Tencode is also used as a single
channel tensor, an MCTS with a single time window size
(but two channels) strictly separates polarities, thereby pro-

Table 1. Pose estimation after training SuperEvent with temporal matching data, homographic adaptation data, and samples from both
methods.

Pose Estimation AUC in %

Training Data Generation Method Event Camera Dataset [22] Event-aided Direct Sparse Odm.[11]

@5° @10° @20° @5° @10° @20°

Homographic adaptation 17.2 24.3 31.0 12.3 21.0 31.5
Temporal matching (ours) 22.7 35.8 46.7 15.2 26.4 40.1
Homographic adaptation + temp. matching 18.5 28.1 37.1 13.1 22.0 33.0

Table 2. Pose estimation with different time surface variants as input representations. The index number of the Multi Channel Time
Surfaces (MCTS) indicates the number of time window sizes ∆t.

Input Pose Estimation AUC in %

Event Camera Dataset [22] Event-aided Direct Sparse Odometry [11]

Representation Channels @5° @10° @20° @5° @10° @20°

Time Surface [15] 1 13.8 21.4 29.3 13.0 22.5 34.1
Tencode (gray) [13] 1 19.5 28.7 36.9 13.9 23.7 36.3
MCTS1 (ours) 2 20.3 30.0 38.7 14.1 24.4 37.0
MCTS5 (ours) 10 22.7 35.8 46.7 15.2 26.4 40.1
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Table 3. Network architecture ablation study on pose estimation on the Event Camera dataset [22]. Every backbone layer reduces the
spatial dimensions by half (except for 3).
1Architecture similar to SuperPoint [5]

2Architecture similar to DISK [28]
3Architecture similar to SiLK [10] (no spatial reduction in backbone)

4SuperEvent
5Backbone similar to [9]

6Other investigated architectures

Backbone Descriptor Loss Pose Estimation AUC in %

Blocks Layers Channels Resolution Detector Descriptor @5° @10° @20°
1 VGG 3 32, 64,

128
8x8 grid Cross-

Entropy
dot

product
20.2 31.7 42.2

2 VGG 3 32, 64,
128

pixelwise Focal loss Cycle-
Consistency

20.8 31.0 40.7

3 VGG 3 32, 64,
128

pixelwise Focal loss Cycle-
Consistency

18.5 25.5 31.3

4 MaxVit 3 32, 64,
128

8x8 grid Cross-
Entropy

dot
product

22.7 35.8 46.7

5 MaxVit 4 32, 64,
128, 256

8x8 grid Cross-
Entropy

dot
product

22.4 33.9 43.8

6 MaxVit 3 32, 64,
128

pixelwise Focal loss Cycle-
Consistency

20.5 29.7 38.0

6 MaxVit 3 64, 128,
256

pixelwise Focal loss Cycle-
Consistency

21.0 30.3 38.6

6 MaxVit 4 32, 64,
128, 256

pixelwise Focal loss Cycle-
Consistency

20.3 30.5 40.3

6 MaxVit 4 64, 128,
256, 512

pixelwise Focal loss Cycle-
Consistency

20.2 29.4 38.2

6 MaxVit 5 32, 64,
128, 256,

512

pixelwise Focal loss Cycle-
Consistency

15.2 23.0 31.3

6 MaxVit 5 64, 128,
256, 512,

1024

pixelwise Focal loss Cycle-
Consistency

17.5 26.4 35.6

viding the model with additional information improving
the performance further. Finally, more time windows in-
crease the model’s robustness to fast or slow scene mo-
tions. Therefore, the 10-channel MCTS5 with ∆t{1,...,N} =
{0.001 s, 0.003 s, 0.01 s, 0.03 s, 0.1 s} enables the model to
outperform all other variants.

1.3. Network Architecture

We compare various combinations of network architectures
from the literature [5, 9, 10]. We investigate two back-
bone configurations, namely VGG [25] and MaxVit [27],
and their hyperparameters number of layers in backbone
and output channels per layer in backbone. Additionally,
we investigated if a descriptor prediction on pixel-level as
in [10, 28] performs better than the 8-grid interpolation

from [5]. For the pixelwise descriptor approach, we em-
ploy Focal loss [20] to train the detector head and the Cycle-
Consistency loss [10, 28] for the descriptor head.

2. Examples of Network Predictions and
Pseudo-labels

Figure 1 shows training samples of SuperEvent generated
by temporal matching of gray-scale frames. Due to the
modality change, SuperEvent does not learn to exactly
match the pseudo-labels, but partially detects and matches
different keypoints, while still yielding similar patterns.

Matched keypoints from SuperEvent on unseen se-
quences are shown in Figure 2. These sequences are held
out during training, showing the generalization ability of
SuperEvent.



(a) DAVIS Driving Dataset 2020 [12]: rec1501953155 (b) UZH-FPV Drone Racing Dataset [4]: Outdoor Forward Facing 2

(c) Multi Vehicle Stereo Event Camera Dataset [29]: Indoor Flying 2 (d) GRIFFIN Perception Dataset [23]: Soccer People 1

(e) Vision for Visibility Dataset [16]: Indoor Global Aggressive

Figure 1. Examples of the training data for temporal matching. Top (orange): pseudo-labels generated by SuperPoint [5] + SuperGlue [24];
bottom (green): predictions of SuperEvent after training.



(a) DAVIS Driving Dataset 2020 [12]: rec1501614399 (b) UZH-FPV Drone Racing Dataset [4]: Indoor 45° Downward Facing 14

(c) Multi Vehicle Stereo Event Camera Dataset [29]: Outdoor Night Drive 1 (d) Vision for Visibility Dataset [16]: Indoor Varying Robust

Figure 2. Examples of predictions and pseudo-labels of data not used for training. Top (orange): pseudo-labels generated by SuperPoint [5]
+ SuperGlue [24]; bottom (green): predictions of SuperEvent.

3. Event-based versus Frame-based Keypoint
Matching

Since SuperEvent is not explicitly trained in scenarios
where the quality of frame cameras degrades, such as fast
scene motion and high dynamic range (HDR), we demon-
strate its generalization ability by comparing SuperEvent’s
event-based keypoint correspondences to related frame-
based results.

3.1. Qualitative Comparison for Fast Motion and
HDR

Figure 3 shows matches of the same scenes (not used for
training) generated by SuperPoint [5] + SuperGlue [24] on
the frames and by SuperEvent and brute-force matching
on the event stream. While the quality of the frames un-

der fast scene motion and HDR degrades, the event stream
suffers less under these conditions, resulting in better and
more equally distributed keypoint matches when using Su-
perEvent.

3.2. Comparison in SLAM Downstream Task

We quantitatively compare the SLAM results from plain
frame-based OKVIS2 [17] and our modified version af-
ter replacing the frame-based BRISK [18] detector with
SuperEvent. Since event data degrades less than frames
in such conditions, SuperEvent’s predictions improve
OKVIS2’s estimations. Choosing a higher processing rate
further boosts the performance: the visual overlap between
MCTSs rises, and the effects of motion dependence are mit-
igated.



(a) HDR: DAVIS Driving Dataset 2020 [12]: rec1501614399 (b) HDR: Vision for Visibility Dataset [16]: Indoor Varying Robust

(c) Fast motion: UZH-FPV Drone Racing Dataset [4]: Outdoor 45° Down-
ward Facing 1

(d) Fast motion: UZH-FPV Drone Racing Dataset [4]: Indoor 45° Down-
ward Facing 14

Figure 3. Frame-based SuperPoint [5] + SuperGlue [24] (top), event-based SuperEvent (ours, bottom) on unseen sequences, showing the
superior matching capabilities of SuperEvent by leveraging the higher quality of event data for scenes with HDR or fast scene motion.

Table 4. Results on TUM-VIE [14] sequences with fast motion (mocap-shake) and low light (floor2-dark). ATE and RPE in cm; RPE for
consecutive frames. Results marked ∗ are not representative due to discontinuous ground truth.

OKVIS2 [17] + SuperEvent (ours) frame-based

20 Hz 40 Hz 20 Hz

Sequence ATE RPE ATE RPE ATE RPE

mocap-shake 43.71 0.55 29.14 0.26 50.83 1.03
mocap-shake2 43.75 0.80 27.37 0.46 66.29 1.39
floor2-dark 9.58 2.51∗ 9.37 1.23∗ failed failed



4. Pose Estimation Experiment
In this section, we explain the details of the keypoint-based
pose estimation benchmark and justify why we chose this
method to evaluate SuperEvent.

4.1. Benchmark Design
Pose Estimation requires reliable keypoint detection and
matching and is therefore a common baseline for frame-
based keypoint detectors [10, 24, 26, 28]. It also indicates
the approaches’ usability for downstream applications such
as Visual Odometry, Simultaneous Localization and Map-
ping (SLAM), and Structure-from-Motion (SfM) that usu-
ally rely on keypoint-based pose estimation. Frame-based
approaches are evaluated on datasets such as ScanNet [3]
and MegaDepth [19] containing various images of the same
scene with the associated ground truth camera poses, allow-
ing for a straightforward pose estimation evaluation. How-
ever, event datasets are usually temporally continuous se-
quences because of the sensor’s asynchronous nature. This
raises the question, at which timestamps the pose estima-
tion is evaluated. We define the evaluation benchmark as
follows:
• At each time step ti with available ground truth data, the

ground truth camera orientation must change by the max-
imal rotation change angle c∆r,max within the maximal
time difference c∆τ .

• We find equally n distributed rotation changes in this time
interval to evaluate the pose estimation.

In this experiment, we choose c∆r,max = 45 ° c∆τ = 2 s and
n∆r = 45 to test various levels of difficulty while reducing
the amount of samples without visual overlap. Our prac-
tical implementation executes the following steps for each
sequence:
1. For all timestamps with associated ground truth pose

measurements (usually between 100 and 200Hz), we
generate keypoint and descriptor predictions. For track-
ing approaches, we assign a track ID as a scalar descrip-
tor. Matching the same track ID reproduces the tracking
result.

2. Next, we iteratively check for each ground truth sam-
ple if any of the subsequent ground truth samples within
c∆τ = 2 s yields an rotation change of at least c∆r,max =
45 °}. If this condition cannot be fulfilled, we skip the
respective sample.

3. For samples with sufficient rotation change within
c∆r,max, we find the first subsequent ground truth rota-
tion values that surpass the equally distributed rotation
changes c∆r,max

n∆r
· {1, 2, . . . , n∆r} = {1 °, 2 °, . . . , 45 °}.

4. We match the keypoint descriptors for these selected pre-
diction samples with associated ground truth measure-
ments. The camera pose is estimated based on the re-
sulting keypoint pairs and considering the lens distortion
(unless the approach to evaluate already required a rec-

tified event representation as input). We calculate the
rotation difference and its angle of the axis-angle repre-
sentation.

5. Having evaluated samples of the dataset sequences, we
report the area-under-curve (AUC) for different thresh-
olds as in [26].

We evaluate SuperEvent on the following sequences, omit-
ting the ones without sufficient rotation changes as well as
calibration sequences.
Event Camera Dataset [22]:
• boxes 6dof
• boxes rotation
• poster 6dof
• poster rotation
• shapes 6dof
• shapes rotation
Event-aided Direct Sparse Odometry [11]:
• peanuts dark
• peanuts light
• rocket earth light
• rocket earth dark
• ziggy and fuzz
• ziggy and fuzz hdr
• peanuts running
• all characters

4.2. Why Not Homography Estimation?
Some of the existing approaches are benchmarked on
homography estimation of planar scenes [1, 2, 8, 13,
21]. However, the commonly used HVGA ATIS Corner
dataset [21] contains neither ground truth poses nor ho-
mography measurements. Therefore, the authors compare
the mean reprojection error (MRE) of their method’s de-
tected points warped by the estimated homography. But
without comparing it to any ground truth, in general, it can-
not be guaranteed that the estimated homography is (close

          

 

 

 

 

          

          

                        

 
 

 
 

  
 

 
  

  
  

  
 

  
  

 
  

  
  

  
 

  

Figure 4. Homography estimation on HVGA ATIS [21] matching
400 keypoints per sample, ∆t = 50ms, and RANSAC reprojection
error thresholds of {0.1, 0.3, 1, 3, 10} pixels.



Table 5. RPE scores in cm for consecutive samples at 20 Hz of
OKVIS2 [17] + SuperEvent on the TUM-VIE mocap sequences.

1d-trans 3d-trans 3dof desk desk2

0.07 0.14 0.10 1.39 1.25

to) correct. E.g., in most cases, a nonsensical estimate
that matches four random keypoints can achieve the opti-
mal score of 0 since this is the minimum number of point
correspondences to estimate the homography; and there will
not be any outliers that negatively influence the score.

As long as there are always sufficiently many keypoints
detected, this evaluation procedure might still be sensible
for approaches that rely on basic nearest neighbor matching
in pixel-space because some wrong matches do not lead to
large errors. However, for approaches that rely on descrip-
tor matching [1, 2, 21], only a few outliers with large errors
have a serious negative impact on the reported score. Most
downstream applications therefore employ outlier filtering,
such as Random Sample Consensus (RANSAC) [6]. Also,
the approaches relying on descriptor matching [8, 13] em-
ploy RANSAC as their homography estimation benchmark.
The RANSAC algorithm rejects outliers with a reprojection
error greater than a pre-defined threshold cR. Thus, this
threshold is an upper bound to the estimated homography
reprojection error since all keypoints with larger errors are
filtered out. Thereby, the MRE score can be arbitrarily re-
duced by choosing a smaller cRE, making it inappropriate
for performance benchmarking.

This general problem applies not only to RANSAC but
to all approaches relying on some form of outlier removal as
a post-processing step. Outliers, of course, are never com-
pletely avoidable, and it is a common procedure to remove
them in downstream applications. Therefore, we decided
to reproduce the frame-based benchmark of estimating the
camera pose change in datasets with ground truth camera
pose measurements – producing meaningful results for ap-
proaches with outlier removal.

We illustrate this issue in Figure 4 where we plot the
reprojection error after homography estimation for differ-
ent RANSAC reprojection error thresholds over the ratio of
matches classified as inliers: SuperEvent achieves similar
reprojection errors as EventPoint [13] with RANSAC lead-
ing to far fewer outliers.

5. Stereo Event-Visual Intertial SLAM Exper-
iment

Lastly, we visualize 2D projections of the trajectories esti-
mated by SuperEvent integrated into OKVIS2 [17] yielding
the reported results. In addition to the ATE reported in the
main paper, we also report the RPE results of our method
for completeness.

Table 6. RPE scores in cm for consecutive samples at 20 Hz of
OKVIS2 [17] + SuperEvent on the VECtor large-scale sequences.

corr.- corr.- units- units- school- school-
dolly walk dolly scooter dolly scooter

16.72 14.50 23.10 42.40 21.66 45.78

5.1. TUM-VIE Small-scale Sequences
Figure 5 shows the trajectories from SuperEvent + OKVIS2
on the TUM-VIE [14] mocap-sequences. Since OKVIS2 is
non-deterministic, we process every sequence 5 times and
select the trajectory with median error. We report the RPE
scores in Table 5.

5.2. TUM-VIE Large-scale Sequences
The effect of loop closure on the trajectory estimation of
OKVIS2 + SuperEvent can be seen in Figure 6. The loop
closure is reliably detected on all 4 loop-floor sequences of
the TUM-VIE dataset. Since the ground truth is not contin-
uous, we do not report RPE scores for these sequences, as
they lack interpretive value and are not comparable.

5.3. VECtor Large-scale Sequences
Figure 7 shows the trajectories from SuperEvent + OKVIS2
on the VECtor [7] large-scale sequences. We report RPE
scores in Table 6.
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