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A. Additional Implementation Details
A.1. CIR Datasets
FashionIQ [28] is a dataset that contains fashion-related images from three main categories: Shirts, Dresses, and Toptee. It has
a total of 30,134 triplets, which were created from 77,684 images. As the ground truth labels are not publicly available, we
utilize the results from the validation set for our analysis and comparison. CIRR [15] encompasses a wider range of domains
and contains images with more complex descriptions compared to FashionIQ. It contains 36,554 triplets extracted from 21,552
images, which are sourced from the well-known NLVR2 natural language inference dataset [23]. As pointed out in previous
works [3, 9, 20], CIRR and FashionIQ suffer from a significant number of false negatives, which can potentially lead to
inaccurate retrieval evaluations [3, 20]. To address this issue, CIRCO [3], based on COCO images [14], is recently introduced
by providing multiple positive images for each query. This approach enables a more reliable and robust mAP metric [5, 16],
which is essential for accurate evaluation of retrieval performance.

We additionally provide results on two more benchmark datasets, GeneCIS [26] and COCO Object Composition introduced
by [20], in Suppl. B.1. GeneCIS [26] is constructed based on COCO images and the Visual Attributes in the Wild dataset [17].
GeneCIS introduces four task variations: (1) focus on an attribute, (2) change an attribute (3) focus on an object, and (4) change
an object. These tasks explore different aspects of image retrieval and manipulation. For the COCO Object Composition task,
5000 images from the COCO validation dataset are utilized to evaluate object composition. Our objective is to retrieve an
image that contains an object specified by a query image, along with scenes or objects described using text. The composed
query is constructed by combining “a photo of [$], [obj1], [obj2] ... and [objn]” where [obji] are text descriptions.

A.2. Details of text triplets
Here, we describe the details of the LLM-based and rule-based text triplet generation process. As shown in Figs. 1 and 2,
which showcases examples of both LLM-based and rule-based triplets, both approaches produce natural and coherent text
triplets. Note that none of the datasets used for generating text triplets overlap with the data used in the target CIR benchmarks,
with the exception of the CASE dataset [12]. The source of the CASE dataset is VQA2.0 [7], which is constructed from the
COCO dataset [14], potentially leading to overlap in cases involving COCO object composition [20].
[Detailed explanation on LLM-based triplets] As described in Sec. 3, besides Compodiff [8], we conduct experiments
using various publicly available text triplets: IP2P [4], COVR [27], and CASE [12]. Although the primary objective of these
approaches is to generate CIR triplets (Ir, Tc, It), they also produce text triplets. Below, we provide detailed descriptions of
how text triplets are constructed in each approach (Note again that their final product is CIR triplets). There are two main ways
to generate text triplets using LLMs: 1) generating both conditional text Tc and target caption Tt given reference caption Tr

using fine-tuned LLM for this task, such as IP2P, Compodiff; and 2) generating only conditional text Tt given pairs (Tr, Tt)
from pre-existing captions by identifying with visually or text semantically similar such as CoVR [27], and CASE [12]. In
addition to these existing datasets, we implement an efficient in-context learning-based generation process. Examples and
summaries of each dataset can be found in Tab. S1 and Tab. S2.

IP2P employs GPT-3 for text triplets generation and fine-tunes it with a human-curated small set of 700 text triplets.
Namely, given reference captions Tr sampled from LAION-Aesthetics V2 6.5+ dataset [21], the corresponding conditional
texts Tc and corresponding target captions Tt are manually written by humans. After fine-tuning on this small set of text
triplets, the model generates 454k text triplets: reference captions Tr from the LAION-Aesthetics V2 6.5+ dataset [21] are
provided as input to the fine-tuned LLM, whose output predicts the corresponding conditioning text Tc and the target caption
Tt. Note that the LAION-Aesthetics dataset is not related to the original source datasets (FashionIQ, NLVR2, and MS-COCO)
used in existing CIR benchmarks (FashionIQ, CIRR, and CIRCO), ensuring no overlap with the CIR benchmarks.

Compodiff enhances the scalability of the IP2P text triplet generation process by modifying the choice of LLM and
expanding the fine-tuning dataset. As described in [8, Section 4], the OPT-6.7B model is utilized and fine-tuned with LoRA on
the above 454k text triplets of IP2P [4]. Then, similar to the IP2P approach, given reference captions from the LAION dataset
[21], fine-tuned LLM generates the corresponding conditioning texts and target captions.



COVR starts by identifying similar caption pairs from the WebVid2M dataset [1], which contains 2.5 million video-caption
pairs. These pairs serve as the reference captions (Tr) and target captions (Tt). Then, given these pairs (Tr, Tt), LLM generates
conditional captions that describe the differences between the paired captions. The LLaMA-7B model [25] is utilized for
this purpose and is fine-tuned on an expanded version of the above 700 manually annotated triplets used in IP2P (adding 15
annotations for more diverse cases).

CASE uses VQA2.0 dataset [7], which consists of (image, question, answer) triplets. Given (I,Q,A) triplets, complemen-
tary triplets (Ic, Q,Ac) are manually selected based on visually similar image Ic with three rules: 1) the premise assumed in
question Q holds for both I and Ic, 2) Q is logical for Ic, and 3) the answer Ac for Ic differs from A. Then, conditional text Tc

is generated by GPT-3, describing differences between image pairs (I, Ic) without fine-tuning, leveraging in-context learning
with a few examples. Since the VQA2.0 dataset is derived from the COCO dataset, COCO captions that match VQA2.0 images
are used to form text triplets.

As seen in Tab. S1, compared to other approaches, the quality of the text triplets (Tr, Tc, and Tt) from CASE is not always
satisfactory, which results in minimal performance gain as shown in Tab. 6. Namely, unlike other CIR datasets that first create
high-quality text triplets before generating CIR triplets, CASE generates the conditioning text Tc using the reference image Ir
and target image It. The provided reference text Tr and target text Tt are taken directly from the captions of reference image
Ir and target image It in the VQA2.0 dataset. Therefore, due to the poor descriptiveness of these captions and their lack of
consideration for the conditioning text Tc, it often fails to capture the differences between Tr and Tt adequately (while Tc

might effectively explain the visual differences between Ir and It).
Efficient in-context learning refers to our efficient implementation which uses a recent and powerful LLM, LLaMA3-8B

[6]. This approach performs in-context learning using reference captions Tr from the CC3M dataset [22], guided by a
custom-designed prompt with a few examples of textual modifications (e.g., replace, change, remove, ...). Specifically, given a
reference caption Tr, the prompt instructs the model to generate a target caption Tt, which is a complete sentence that slightly
differs from the corresponding reference caption. Then, the prompt guides the model to generate conditioning text that explains
the differences between Tr and Tt, based on the above pre-defined textual modifications. Compared to Compodiff, which takes
3.8 hours to generate 1 million text triplets, this version requires only 1.5 hours. In Tab. 6, we verify that this more efficient
version achieves competitive performance compared to the other fine-tuned LLM approaches.

Table S1. Examples of text triplet datasets.

Text triplets Reference text Tr Conditioning text Tc Target text Tt

Rule-based “another wall at my home” “bedroom is added in place of wall” “another bedroom at my home”
IP2P [4] “watercolor of your pet!” “make it a huge grizzly bear” “watercolor of a huge grizzly bear!”

Compodiff [8] “Chinese landscape watercolor painting” “make the landscape a cityscape” “chinese cityscape watercolor painting”
Efficient in-context learning “young business woman on a bench” “add a laptop” “young business woman on a bench with a laptop”

CoVR [27] “Two little boys are running” “Have them dance” “Two little boys are dancing”
CASE [12] “A scone with an orange slice on a plate” “This food is not acidic” “a close up of a muffin on a plate on a table”

Table S2. Summaries of text triplet dataset.

Dataset Use LLM Model Fine-tuning strategy # of text triplets

Rule-based ✘ ✘ ✘ 1.3M
IP2P [4] ✔ GPT-3 Fine-tuned on 700 human-written text triplets 450K

Compodiff [8] ✔ OPT-6.7B Fine-tuned on 450k IP2P text triplets 2.5M
Efficient in-context learning ✔ LLaMA3-8B In-context learning 1M

CoVR [27] ✔ LLaMA-7B Fine-tuned on 700 human-written text triplets 700K
CASE [12] ✔ GPT-3 In-context learning 350K

[Detailed explanation on rule-based triplets] To construct rule-based triplets, we mainly follow the process described in [8,
Section 4.1]. Firstly, given reference captions, important keywords like nouns are extracted with a part-of-speech (POS) tagger
via the Spacy library. Then, the keyword is filtered by frequency filtering with hard thresholding to focus only on frequently
occurring keywords. Specifically, we only use keywords that appear more than 100 times. After applying keyword frequency
filtering, the remaining keyword list is used to create caption triplets (Tr, Tc, Tt). To generate text triplets, a keyword from the
given Tr is selected, and alternative keywords are extracted based on text similarity scores ranging from 0.5 to 0.7, using the
SBERT all-MiniLM-L6-v2 [18]. The target caption Tt is then constructed by substituting the original keyword with a similar



alternative. The conditioning text Tc is generated using randomly selected pre-defined templates, as detailed in Tab. S3. Here,
most of the templates are similar to that of Compodiff [8]. We use captions from the CC3M dataset [22] as reference captions
Tr. Note that CC3M is not related to the existing CIR benchmarks, which again ensures no overlap with the CIR benchmarks.

Since the quality of the generated triplets with the above procedure may not be optimal, we employ an additional filtering
process. Compodiff [8] employs an additional filtering process that uses cosine similarities between generated images and
texts, calculated by CLIP encoders. However, as we do not have images for captions, we filter the inappropriate texts using
only textual information inspired by LinCIR [9]. Namely, we calculate the similarity between the CLIP text embedding of
Tt and the CLIP text embedding of “a photo of [$]” where [$] is obtained by Tt projected by ϕ from LinCIR (ViT-L/14).
Following LinCIR noise (Unif(0, 1)×N (0, 1)) is injected before passing through ϕ. After calculating the above similarity,
texts whose similarities are less than the threshold (0.75) are removed. The same process is also applied to the reference
caption Tr and the intersection of filtering processes for Tt and Tr is used for the final dataset whose size becomes 1.3M. As
described in Suppl. B.6, we verify that this filtering process is effective. However, this does not imply that the effectiveness of
rule-based text triplets is solely dependent on the use of a projection module in the filtering process; even without filtering, the
enhancement from RTD remains valid.

Figure 1. Example of rule-based triplet datasets



Figure 2. Example of LLM-based triplet datasets
Table S3. The full 50 keyword converting templates

”replace ${source} with ${target}” ”substitute ${target} for ${source}”
”apply ${target}” ”${source} is removed and ${target} takes its place”
”convert ${source} to ${target}” ”modify ${source} to become ${target}”
”replace ${source} with ${target}” ”customize ${source} to become ${target}”
”update ${source} to ${target}” ”change ${source} to match ${target}”
”substitute ${target} for ${source}” ”${target} is introduced after ${source} is removed”
”alter ${source} to match ${target}” ”${target} is added in place of ${source}”
”upgrade ${source} to ${target}” ”${target} is introduced as the new option after”
”amend ${source} to fit ${target}” ”${source} is removed and ${target} is added”
”opt for ${target}” ”${source} is removed and ${target} is introduced”
”${source} is removed” ”${target} is added as a replacement for ${source}”
”add ${target}” ”${target} is the new option available”
”if it is ${target}” ”${target} is added after ${source} is removed”
”${target} is the updated option” ”${target} is introduced after ${source} is retired”
”${target} is the updated choice” ”tweak ${source} to become ${target}”
”${source} is replaced with ${target}” ”has no ${source}”
”change ${source} to ${target}” ”alter ${source} to ${target}”
”swap ${source} for ${target}” ”redesign ${source} as ${target}”
”turn ${source} into ${target}” ”adapt ${source} to fit ${target}”
”choose ${target} instead of ${source}” ”${target} is the new choice”
”${target} is the new selection” ”exchange ${source} with ${target}”
”transform ${source} into ${target}” ”show no ${source}”
”no ${source}” ”remove ${source}”
”delete ${source}” ”not a ${source}”
”with no ${source}” ”without ${source}”



A.3. Details on integration with FTI4CIR [13] and Context-I2W [24].
FTI4CIR [13] enhances the fine-grained capability of the projection module ϕ by separately handling subjects and attributes
using distinct projection modules, ϕs and ϕa. To achieve this, they leverage BLIP-generated captions that explicitly separate
subject and attribute information in the text domain, formatted as “[primary subject(s)] + [detailed description].” Unlike the
subject module ϕs, which focuses on global subject information, ϕa processes localized attribute details. FTI4CIR extracts
attribute features by adaptively aggregating patch features via an additional transformer. However, this approach requires an
extra forward pass of the transformer with full sequences of visual embeddings for ϕa, rather than a single pooled embedding,
making it incompatible with our refined concatenation scheme (RC). Therefore, we do not use ϕa during the training of
RTD (of course, it is used in inference). Instead, we focus on training ϕs while incorporating attribute information in the
text domain. Specifically, we generate text triplets using BLIP-generated captions to separately capture subject and attribute
information, through “Efficient In-Context Learning” (see Suppl. A.2). Then, we provide subject information to ϕs while
directly using attribute information in text format. For example, given text triplets: Tr : “a room with a chair and a table”, Tc :
“replace the chair with a sofa”, Tt : “a room with a sofa and a table”. our refined concatenation scheme (RC) ensures that only
textual subject information is input to ϕs. This extraction is feasible because BLIP-generated captions (from FTI4CIR) already
provide subject and attribute separation.

Context-I2W [24] introduces a context-dependent projection module that selects relevant visual information. To achieve
this, Context-I2W employs a more complex projection mechanism that utilizes context captions such as “A [REPLACE]
passes the ball with his teammate during a training session”, which removes the first subject term. Then, these context captions
and full visual sequence embeddings from the visual encoder are fused in the Context-I2W projection module. Since it
requires full sequences of visual embeddings rather than a single pooled embedding, it can be incompatible with our refined
concatenation scheme (RC). In such cases, our method can still be applied simply by replacing the text encoder. Namely,
instead of training RTD with the projection module from Context-I2W, we simply replace the text encoder with the one
updated by RTD using the projection module ϕ from Pic2Word [20]. Namely, during inference, we use the projection module
from Context-I2W alongside the RTD-updated text encoder (which was trained with the projection module from Pic2Word).
The strong performance of this variant suggests that RTD does not need to be trained with each specific projection module,
again highlighting its strong generalizability.

B. Additional experimental results
B.1. Results on GeneCIS [26] and COCO object composition
We observe that integrating our approach with projection-based CIR methods results in consistent yet marginal performance
improvements on GeneCIS, as shown in Tab. S4. The relatively smaller performance difference compared to other datasets can
be attributed to the types of conditioning text used in GeneCIS. Namely, GeneCIS only uses the fixed four text instructions
“change attribute”, “focus attribute”, “change object”, and “focus object”, which is different from the usual text instruction we
expected (e.g., “change the dog to a cat”).

In the experiment on COCO object composition, we observe a significant performance improvement, similar to the results
obtained on other datasets in Tab. S5. This finding reaffirms that our approach, when combined with ZS-CIR methods,
consistently achieves strong performance, demonstrating its generalizability.

B.2. Results on different backbones (ViT-B/32, ViT-L/14)
Full results of Fig. 3 can be found in Tab. S6 and Tab. S7. Tab. S6 shows the evaluation results on the FashionIQ dataset. In
the table, we observe that the incorporation of our approach with projection-based CIR methods significantly improves the
performance across all three existing projection-based CIR methods (SEARLE, Pic2Word, and LinCIR) and all backbones
(ViT-B/32 and ViT-L/14). For example, regardless of the choice of projection-based CIR methods and backbones, the minimum
performance gain for average R@10 and R@50 scores is greater than 2 and 3.5 points, respectively. Tab. S7 shows a similar
trend on the CIRR and CIRCO datasets. Notably, in some metrics on the CIRR and CIRCO datasets, the performance
improvements achieved through our method (ViT-B/32) even exceed those obtained by employing a larger backbone (ViT-
L/14), which demonstrates the effect of our method. Specifically, in the CIRR R@1 score, SEARLE + RTD (26.29) and
LinCIR + RTD (24.82) using ViT-B/32 surpasses the original results of SEARLE (24.89) and LinCIR (23.76) using ViT-L/14.

B.3. Results on larger backbone (ViT-G/14)
As reported in Tab. 2, we evaluate the performance of RTD using the significantly larger backbone (ViT-G/14 [10]). As
described in Sec. 4.3, we use the projection module ϕ from LinCIR [9]. Since the pre-trained projection module ϕ for LinCIR



Table S4. GeneCIS results

Average
R@1 R@2 R@3

ViT-B

Pic2Word 11.13 21.08 31.05
+RTD 12.03 (+0.90) 21.61 (+0.53) 31.09 (+0.04)

SEARLE 12.19 22.56 32.03
+RTD 12.82 (+0.63) 22.97 (+0.41) 32.44 (+0.41)

LinCIR 12.23 21.29 30.80
+RTD 12.83 (+0.60) 22.83 (+1.54) 32.22 (+1.42)

ViT-L

Pic2Word 11.18 21.45 30.55
+RTD 11.92 (+0.74) 22.32 (+0.87) 31.33 (+0.78)

SEARLE 12.30 22.08 31.29
+RTD 12.40 (+0.10) 22.82 (+0.74) 32.37 (+1.08)

LinCIR 12.45 22.66 32.06
+RTD 13.18 (+0.73) 23.12 (+0.46) 32.77 (+0.71)

Table S5. COCO object composition results

COCO
R@1 R@5 R@10

ViT-B

Pic2Word 6.88 13.6 17.52
+RTD 7.62 (+0.74) 20.23 (+6.63) 28.69 (+11.17)

SEARLE 9.52 21.45 29.38
+RTD 11.01 (+1.49) 24.34 (+2.89) 32.84 (+3.46)

LinCIR 7.15 18.38 27.3
+RTD 9.59 (+2.44) 21.66 (+3.28) 30.66 (+3.36)

ViT-L

Pic2Word 10.26 23.67 32.53
+RTD 10.26 (+0.00) 24.66 (+0.99) 33.56 (+1.03)

SEARLE 12.07 26.13 35.17
+RTD 14.38 (+2.31) 29.74 (+3.61) 38.09 (+2.92)

LinCIR 11.37 24.53 33.85
+RTD 14.6 (+3.23) 29.84 (+5.31) 38.87 (+5.02)

[9] (ViT-G/14) is not publicly available, we reproduce it and integrate RTD with it. We emphasize that similar to our previous
results, RTD again achieves remarkable gains across all datasets. Here, we set the learning rate as 10−6.

B.4. More efficient variants
Tab. S10 presents the results of the more efficient implementations of our approach in terms of the number of updated
parameters. Specifically, instead of updating the entire set of parameters of the text encoder, we explore updating only a few
layers of the network when applying RTD, Our findings indicate that updating only the fully connected layers (denoted as
“Whole FCs”) nearly matches the performance of the full model while using less than half the number of learnable parameters
(40.72 vs. 40.53 average scores). Additionally, we verify that updating only three fully connected layers, whose parameter
size matches the projection module ϕ and constitutes 11.5% of the full model, is also sufficiently effective. We test various
three-layer updating strategies: “First 3 FCs”: the first three layers (closest to the input), “middle 3 FCs”: the middle three
layers, “Last 3 FCs”: the last three layers, and “Interleave 3 FCs”: an interleaved selection of three layers (first, middle, and
last layers). Among these, we verify that the “Interleave 3 FCs” shows the best result, maintaining competitive performance



Table S6. FashionIQ validation results. The results of RTD combined with Pic2Word [20], SEARLE [3], and LinCIR [9] across different
CLIP backbones (ViT-B/32 and ViT-L/14) are shown.

Shirt Dress Toptee Average
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

ViT-B/32

Pic2Word 13.40 28.46 8.48 20.77 13.31 29.68 11.73 26.30
+RTD 23.06 (+9.66) 40.48 (+12.02) 20.33 (+11.85) 41.75 (+20.98) 24.12 (+10.81) 46.35 (+16.67) 22.5 (+10.77) 42.86 (+16.56)

SEARLE 24.78 41.85 17.90 36.99 25.24 46.71 22.64 41.85
+RTD 26.69 (+1.91) 44.31 (+2.46) 20.72 (+2.82) 43.13 (+6.14) 26.67 (+1.43) 48.75 (+2.04) 24.7 (+2.06) 45.4 (+3.55)

LinCIR 18.55 34.64 15.67 33.86 20.19 40.08 18.14 36.20
+RTD 23.65 (+5.10) 42.74 (+8.10) 19.98 (+4.31) 41.75 (+7.89) 24.73 (+4.54) 46.56 (+6.48) 22.79 (+4.65) 43.68 (+7.48)

ViT-L/14

Pic2Word 26.59 42.93 21.32 43.53 28.10 48.19 25.34 44.88
+RTD 27.97 (+1.38) 46.96 (+4.03) 23.50 (+2.18) 46.65 (+3.12) 31.31 (+3.21) 53.09 (+4.90) 27.59 (+2.25) 48.90 (+4.02)

SEARLE 26.94 45.34 19.58 40.80 28.45 49.77 24.99 45.30
+RTD 32.63 (+5.69) 50.39 (+5.05) 23.2 (+3.62) 47.25 (+6.45) 32.18 (+3.73) 54.56 (+4.79) 29.34 (+4.35) 50.73 (+5.43)

LinCIR 30.42 47.99 21.86 44.77 29.98 50.38 27.42 47.71
+RTD 32.83 (+2.41) 50.44 (+2.45) 24.49 (+2.63) 48.24 (+3.47) 33.4 (+3.42) 54.56 (+4.18) 30.24 (+2.82) 51.08 (+3.37)

Table S7. CIRR and CIRCO test results. Details are the same as Tab. S6.

CIRR CIRCO
R@1 R@5 R@10 mAP@5 mAP@10 mAP@25 mAP@50

ViT-B/32

Pic2Word 13.64 37.45 52.22 2.85 3.24 3.89 4.31
+RTD 23.59 (+9.95) 51.76 (+14.31) 65.16 (+12.94) 6.39 (+3.54) 6.66 (+3.42) 7.64 (+3.75) 8.16 (+3.85)

SEARLE 23.71 53.3 66.84 8.90 9.42 10.64 11.34
+RTD 26.29 (+2.58) 56.41 (+3.11) 69.74 (+2.90) 11.26 (+2.36) 12.11 (+2.69) 13.63 (+2.99) 14.37 (+3.03)

LinCIR 18.87 45.66 58.43 6.25 6.74 7.62 8.10
+RTD 24.82 (+5.95) 53.47 (+7.81) 66.87 (+8.44) 8.94 (+2.69) 9.35 (+2.61) 10.57 (+2.95) 11.21 (+3.11)

ViT-L/14

Pic2Word 24.22 51.49 64.05 8.27 9.10 10.09 10.75
+RTD 27.86 (+3.64) 56.24 (+4.75) 68.48 (+4.43) 9.13 (+0.86) 9.63 (+0.53) 10.68 (+0.59) 11.27 (+0.52)

SEARLE 24.89 52.31 65.69 11.62 12.72 14.33 15.13
+RTD 26.63 (+1.74) 56.17 (+3.86) 68.96 (+3.27) 16.53 (+4.91) 17.89 (+5.17) 19.77 (+5.44) 20.68 (+5.55)

LinCIR 23.76 52.89 66.46 13.00 14.11 15.81 16.68
+RTD 26.63 (+2.87) 56.17 (+3.28) 68.96 (+2.50) 17.11 (+4.11) 18.11 (+4.00) 20.06 (+4.25) 21.01 (+4.33)

Table S8. FashionIQ validation results on larger OpenCLIP ViT-G/14 backbone [10].

Method Shirt Dress Toptee Average
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

LinCIR (reported in [9]) 46.76 65.11 38.08 60.88 50.48 71.09 45.11 65.69
LinCIR (reproduced) 46.61 64.72 38.18 60.54 49.26 70.83 44.68 65.36

+RTD 47.20 (+0.59) 66.24 (+1.52) 39.86 (+1.68) 63.01 (+2.47) 51.56 (+2.30) 72.51 (+1.68) 46.21 (+1.54) 67.26 (+1.90)

Table S9. CIRR and CIRCO test results on larger OpenCLIP ViT-G/14 backbone [10].

ViT-G CIRR CIRCO
R@1 R@5 R@10 mAP@5 mAP@10 mAP@25 mAP@50

LinCIR (reported in [9]) 35.25 64.72 76.05 19.81 21.01 23.03 24.18
LinCIR (reproduced) 34.94 64.51 76.12 20.63 21.93 24.12 25.20

+RTD 36.31 (+1.37) 67.47 (+2.96) 78.31 (+2.19) 21.08 (+0.45) 22.29 (+0.36) 24.46 (+0.34) 25.44 (+0.24)

with the full model (40.72 vs. 39.88 average scores). We believe these findings suggest a promising direction for enhancing the
training efficiency of our approach by selectively updating only specific layers of the text encoder.



Table S10. More efficient variants. “Learnable params (%)” denotes the percentage of learnable parameters relative to the entire set of
parameters in the text encoder. Other details are the same as Tab. 6.

CIRR CIRCO FashionIQ Avg
Training variants

Learnable
params (%) R@5 R@10 mAP@10 mAP@25 R@10 R@50

Baseline(LinCIR) 0% 54.29 67.76 12.67 14.45 27.42 47.71 37.38

+RTD (Full model) 100% 57.90 71.13 16.10 17.84 30.24 51.08 40.72

+RTD (Whole FCs) 45.8% 57.76 71.35 15.03 16.90 30.31 51.81 40.53

+RTD (Front 3 FCs) 11.5% 55.65 69.83 13.95 15.81 28.69 49.92 38.98
+RTD (Middle 3 FCs) 11.5% 56.69 70.03 14.66 16.58 28.55 49.84 39.39
+RTD (Last 3 FCs) 11.5% 56.84 69.74 14.81 16.70 29.16 50.43 39.61
+RTD (Interleave 3 FCs) 11.5% 57.21 70.65 15.20 17.13 28.91 50.17 39.88

B.5. Effectiveness of RTD across dataset scales
We conduct experiments with various scales of training text triplets. For the small-scale text triplets, we sub-sampled text
triplets from LLM-based text triplets. Thus, the last row in the Tab. S11 denotes the original result (LLM-based RTD result).
We also measure the effectiveness of RTD using large-scale text triplets (up to 5M) by combining publicly available text
triplets (IP2P, CoVR) with ours (LLM-based, rule-based). Here, validation splits of all three benchmark datasets are utilized.

As shown in Tabs. S11 and S12, we confirm that small-scale text triplets are sufficient to achieve the effectiveness of
RTD. We believe the main reason for this is that, to reduce task discrepancy, only the relationship between the concatenated
caption (reference caption + conditioning caption, Tr+c) and the target caption Tt needs to be learned. We believe this learning
task requires much less data compared to learning representations from scratch. Moreover, since the text encoder is already
pre-trained, the model does not need significant changes to learn this simple but crucial learning task for CIR.

Table S11. Results across different scales of LLM-based text triplets. In each row, text triplets are sub-sampled from 2.5M original
LLM-based text triplets provided by Compodiff [8]. Other details are the same as Tab. 6.

# of triplets CIRR R@5 CIRCO mAP@10 FashionIQ R@10 Avg
1K 56.64 15.66 29.89 34.06
50K 57.40 15.95 30.77 34.71

100K 57.16 16.03 30.57 34.59
2.5M 57.90 16.10 30.24 34.75

Table S12. Results of larger-sized text triplets. Other details are the same as Tab. 6.

IP2P CoVR Compodiff Template-based CIRR R@5 CIRCO mAP@10 FashionIQ R@10 Avg # of triplets
✔ 58.65 15.94 29.62 34.74 450k

✔ 59.82 15.35 29.58 34.92 700k
✔ 57.90 16.10 30.24 34.75 2.5M

✔ 56.71 15.01 30.37 34.03 1.3M
✔ ✔ 59.32 16.10 30.81 35.41 1.25M
✔ ✔ ✔ 59.08 16.15 30.97 35.40 3.75M
✔ ✔ ✔ ✔ 58.65 16.54 31.22 35.47 5.05M

B.6. Ablations on filtering process
In rule-based text triplet generation, we highlight that the filtering process using the projection module from LinCIR is
marginally effective. As demonstrated in the Tab. S13, even without the filtering procedure, the enhancement of RTD from



LinCIR remains considerable. This result demonstrates that the effectiveness of our rule-based text triplets is not solely
dependent on the use of the projection module from LinCIR in the filtering process.

Table S13. Ablations on filtering process. Other details are the same as Tab. 6.

Type LinCIR-based filtering CIRR R@5 CIRCO mAP@10 FashionIQ R@10 Avg
LinCIR - 54.29 12.67 27.42 31.46

+RTD (rule-based) ✘ 55.49 14.75 30.24 33.49
+RTD (rule-based) ✔ 56.71 15.01 30.37 34.03

B.7. Usage of InfoNCE-based symmetric loss
Although only one text encoder is updated (with the encoder used for target representations kept frozen), we adopt a symmetric
InfoNCE loss to leverage bidirectional alignment and enrich the pool of negative samples. We observe that this symmetric
formulation outperforms asymmetric variants (which also have fewer negatives), improving CIRR val R@1 by over 2 points.

B.8. Text triplets with multiple keyword changes
Unlike previous experiments that change a single keyword, we conduct experiments on text triplets with multiple keyword
changes in a single reference caption, using both template-based and LLM-based strategies. The template-based strategy can
be easily extended by (1) extracting multiple keywords per caption (when available), (2) applying the predefined templates
from Tab. S3 to each keyword, and (3) concatenating the resulting phrases to form the conditioning text (and using the
keyword-altered caption as the target text). For the LLM-based strategy, we can extend the in-context approach described in
Sec. 3.1 by simply providing different prompts to handle multiple keyword changes. As shown in Tab. S14, the effect of the
extension appears marginal, likely because current CIR benchmarks are not designed to clearly distinguish between single and
multiple changes. We believe that the ease of constructing goal-specific text triplets, as demonstrated above, combined with
the simplicity of RTD, makes this approach promising for future enhancements and more complex scenarios.

B.9. Zero-shot accuracy on ImageNet-1k
We measure zero-shot accuracy on ImageNet-1k [19] before and after RTD training using the ViT-L/14 backbone, following
the default CLIP evaluation protocol. As RTD is tailored for CIR, it is expected that fine-tuning the CLIP text encoder with
RTD (74.48) results in a slight performance drop (-0.63) compared to keeping it frozen (73.85). The degradation is minor and
not unique to RTD, as similar trends may appear in other CIR methods with synthetic CIR triplets, where preserving alignment
with the pre-trained backbone is not explicitly considered. Compared to other variants, RTD adds minimal storage overhead
for the CIR task, requiring only the adapted text encoder to be saved. As also discussed in Suppl. B.4, it can be further reduced
by updating and saving only a small subset of parameters. We leave the challenge of preventing the forgetting of pre-trained
knowledge while improving CIR performance to future work.

Table S14. Additional results on multiple keywords (Here, two keywords). Other details are the same as Tab. 6.

Source Multi keywords CIRR (R) CIRCO (mAP) FIQ (R) Average@5 @10 @10 @25 @10 @50

LinCIR - - 54.3 67.8 12.7 14.5 27.4 47.7 37.4

+RTD
Rule-based ✘ 56.7 70.3 15.0 17.0 30.4 51.9 40.2 (+ 2.9)

✔ 57.0 71.0 14.8 16.8 30.7 50.9 40.2 (+ 2.9)

LLM ✘ 59.3 71.8 15.8 17.5 29.7 51.4 40.9 (+ 3.5)
✔ 58.0 71.7 15.5 17.5 31.3 52.4 41.1 (+ 3.7)

B.10. Ablations on noise injection
We conduct an ablation study of the different noise types employed for the “refined concatenation scheme” shown in Fig. 2. We
compare three different noise types, uniform distribution, Gaussian distribution, and LinCIR-ish noise (Unif(0, 1)×N (0, 1)).



Table S15. Noise type variation on CIRR/CIRCO dataset

CIRR CIRCO
Noise type Scale R@1 R@5 R@10 mAP@5 mAP@10 mAP@25 mAP@50

Pic2Word - - 13.64 37.45 52.22 2.85 3.24 3.89 4.31

Unif(-1,1) 1 23.23 50.55 64.28 4.29 4.57 5.19 5.57
N (0, 1) 1 21.18 47.78 61.47 4.09 4.26 4.83 5.17

N (0, 1) × Unif(0,1) 0.1 23.52 51.13 64.53 5.13 5.46 6.17 6.62
N (0, 1) × Unif(0,1) 0.5 23.01 51.18 64.84 4.29 4.57 5.19 5.57

+RTD

N (0, 1) × Unif(0,1) 1 23.59 51.76 65.16 6.39 6.66 7.64 8.16

SEARLE - - 23.71 53.3 66.84 8.9 9.42 10.64 11.34

Unif(-1,1) 1 26.07 55.98 69.18 10.87 11.55 12.97 13.65
N (0, 1) 1 26.41 56.68 69.47 10.91 11.53 12.88 13.6

N (0, 1) × Unif(0,1) 0.1 26.02 55.47 68.15 10.43 11.07 12.37 13.07
N (0, 1) × Unif(0,1) 0.5 26.29 56.41 69.74 11.26 12.11 13.63 14.37

+RTD

N (0, 1) × Unif(0,1) 1 26.43 56.58 69.76 11.42 12.04 13.38 14.1

LinCIR - - 18.87 45.66 58.43 6.25 6.74 7.62 8.1

Unif(-1,1) 1 24.39 52.77 66.39 6.81 7.27 8.28 8.84
N (0, 1) 1 24.63 53.52 66.63 7.6 7.97 8.92 9.49

N (0, 1) × Unif(0,1) 0.1 24.58 53.3 66.65 9.6 10.11 11.47 12.15
N (0, 1) × Unif(0,1) 0.5 24.82 53.47 66.87 8.94 9.35 10.57 11.21

ViT-B/32

+RTD

N (0, 1) × Unif(0,1) 1 25.4 54.58 67.69 8.17 8.53 9.72 10.35

Pic2Word - - 24.22 51.49 64.05 8.27 9.1 10.09 10.75

Unif(-1,1) 1 28.24 55.95 68.77 8.14 8.81 9.83 10.37
N (0, 1) 1 27.06 53.95 66.43 7.08 7.66 8.57 9.07

N (0, 1) × Unif(0,1) 0.1 28.24 57.35 68.65 10.04 10.63 11.71 12.31
N (0, 1) × Unif(0,1) 0.5 27.86 56.24 68.48 9.13 9.63 10.68 11.27

+RTD

N (0, 1) × Unif(0,1) 1 27.71 55.68 68.02 8.14 8.78 9.84 10.35

SEARLE - - 24.89 52.31 65.69 11.62 12.72 14.33 15.13

Unif(-1,1) 1 26.96 56.99 69.52 15.82 16.78 18.54 19.39
N (0, 1) 1 27.66 57.54 69.57 15.24 15.93 17.65 18.44

N (0, 1) × Unif(0,1) 0.1 26.31 55.88 69.4 16.05 17.26 19.12 20.01
N (0, 1) × Unif(0,1) 0.5 27.04 56.82 69.95 16.53 17.89 19.77 20.68

+RTD

N (0, 1) × Unif(0,1) 1 27.93 57.76 70.19 17.35 18.66 20.52 23.44

LinCIR - - 23.76 52.89 66.46 13 14.11 15.81 16.68

Unif(-1,1) 1 26.58 56.31 68.94 17.23 18.2 20.11 21.03
N (0, 1) 1 26.75 55.64 68.48 16.45 17.57 19.37 20.3

N (0, 1) × Unif(0,1) 0.1 26.7 56.22 69.08 17.24 18.27 20.24 21.19
N (0, 1) × Unif(0,1) 0.5 26.63 56.17 68.96 17.11 18.11 20.06 21.01

ViT-L/14

+RTD

N (0, 1) × Unif(0,1) 1 26.99 56.1 69.01 17.33 18.3 20.21 21.13

We also examine the scale of LinCIR-ish noise from 0.1, 0.5, and 1. We report the test scores for CIRR and CIRCO, as well as
the FashionIQ validation scores for Pic2Word, SEARLE, and LinCIR in Tab. S15 and Tab. S16. In the tables, we observe
that all noise distributions show decent performance and LinCIR-like noises show slightly better performances than uniform
distribution and normal distribution. We also observe that the different scale choice for the LinCIR-like noise somewhat affects
the overall performances. In the main experiments, we chose 0.5 for the noise scale, following the observed performance
improvements.

C. Generating text triplets cost
Although generating text triplets is not our main contribution, for comprehensive understanding, we compare the generation
time of LLM-based and rule-based approaches. Even when using LLMs, constructing text triplets is significantly more
cost-effective than CIR triplets. Specifically, CIR triplets involve: 1) a subsequent, computationally intensive text-to-image



Table S16. Noise type variation on FashionIQ dataset

Shirt Dress Toptee Average
Noise type Scale R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

Pic2Word - - 13.4 28.46 8.48 20.77 13.31 29.68 11.73 26.3

+RTD

Unif(-1,1) 1 21.84 37.63 18.49 39.61 23.0 43.91 21.11 40.38
N (0, 1) 1 20.36 37.54 16.16 38.18 21.67 42.48 19.4 39.4

N (0, 1) × Unif(0,1) 0.1 22.23 39.35 19.98 41.7 23.81 45.23 22.01 42.09
N (0, 1) × Unif(0,1) 0.5 24.53 43.82 20.33 41.55 26.01 48.75 23.62 44.7
N (0, 1) × Unif(0,1) 1 23.06 40.48 20.33 41.75 24.12 46.35 22.5 42.86

SEARLE - - 24.78 41.85 17.90 36.99 25.24 46.71 22.64 41.85

+RTD

Unif(-1,1) 1 23.75 42.25 20.18 40.36 25.14 46.46 23.02 43.02
N (0, 1) 1 24.14 42.25 20.23 40.16 24.17 46.35 22.85 42.92

N (0, 1) × Unif(0,1) 0.1 25.12 44.85 20.92 41.40 26.57 47.63 24.20 44.62
N (0, 1) × Unif(0,1) 0.5 26.69 44.31 20.72 43.13 26.67 48.75 24.70 45.40
N (0, 1) × Unif(0,1) 1 25.07 44.01 20.43 41.00 26.11 47.12 23.87 44.04

LinCIR - - 18.55 34.64 15.67 33.86 20.19 40.08 18.14 36.20

+RTD

Unif(-1,1) 1 21.79 39.35 18.89 40.21 23.66 45.33 21.45 41.63
N (0, 1) 1 22.37 38.67 19.53 40.11 23.71 44.37 21.87 41.05

N (0, 1) × Unif(0,1) 0.1 23.95 44.11 19.83 41.99 26.62 47.58 23.47 44.56
N (0, 1) × Unif(0,1) 0.5 23.65 42.74 19.98 41.75 24.73 46.56 22.79 43.68

ViT-B/32

N (0, 1) × Unif(0,1) 1 22.82 41.12 19.78 41.70 25.09 47.07 22.56 43.29

Pic2Word - - 26.59 42.93 21.32 43.53 28.10 48.19 25.34 44.88

+RTD

Unif(-1,1) 1 27.87 45.93 23.90 46.80 31.21 52.22 27.66 48.32
N (0, 1) 1 26.94 44.95 23.45 45.56 30.34 51.45 26.91 47.32

N (0, 1) × Unif(0,1) 0.1 28.26 47.64 24.05 47.20 31.21 53.70 27.84 49.51
N (0, 1) × Unif(0,1) 0.5 27.97 46.96 23.50 46.65 31.31 53.09 27.59 48.90
N (0, 1) × Unif(0,1) 1 28.41 46.91 24.10 46.21 31.11 52.27 27.87 48.46

SEARLE - - 26.94 45.34 19.58 40.80 28.45 49.77 24.99 45.30

+RTD

Unif(-1,1) 1 30.13 46.57 22.16 46.90 28.76 50.74 27.02 48.07
N (0, 1) 1 26.99 43.23 21.17 44.82 27.54 49.06 25.23 45.70

N (0, 1) × Unif(0,1) 0.1 32.63 50.39 23.20 47.25 32.18 54.56 29.34 50.73
N (0, 1) × Unif(0,1) 0.5 31.80 49.31 23.20 47.30 31.41 54.00 28.80 50.20
N (0, 1) × Unif(0,1) 1 30.03 47.06 22.41 47.05 30.39 52.42 27.61 48.84

LinCIR - - 30.42 47.99 21.86 44.77 29.98 50.38 27.42 47.71

+RTD

Unif(-1,1) 1 31.94 50.10 24.44 48.19 33.04 54.26 29.81 50.85
N (0, 1) 1 31.70 49.41 23.90 48.19 33.23 53.54 29.27 50.38

N (0, 1) × Unif(0,1) 0.1 32.92 50.64 24.49 48.74 33.50 55.02 30.31 51.47
N (0, 1) × Unif(0,1) 0.5 32.83 50.44 24.49 48.24 33.40 54.56 30.24 51.08

ViT-L/14

N (0, 1) × Unif(0,1) 1 32.43 50.54 24.64 48.79 33.25 54.77 30.11 51.36

generation phase [4, 8], or 2) the availability of image or video datasets along with an additional collection phase for
semantically similar images or videos [12, 27]. In contrast, generating text triplets bypasses these resource-heavy steps. For
example, using 8 A100 GPUs, generating 1M text triplets takes 0.1 hours with the rule-based approach and 3.8 hours with the
LLM-based approach from Compodiff [8] (OPT-6.7B). As described in Suppl. A.2, a more efficient text triplet generation
method using in-context learning with LLaMA3-8B reduces the generation time to 1.5 hours without the need for fine-tuning.

Therefore, while generating text triplets with LLMs incurs a higher cost compared to rule-based methods, it is still
significantly faster (15 times) than generating CIR triplets (as used in CompoDiff), which utilize the text generation step as a
preliminary phase for subsequent text-to-image generation. Thus, we believe that LLM-based generation remains viable, and
the rule-based approach offers greater efficiency.



Figure 3. Qualitative Results on CIRCO dataset

D. Qualitative example on CIRCO
We qualitatively illustrate the results of incorporating RTD into LinCIR on the CIRCO dataset in Fig. 3. The visual examples
provide an intuitive demonstration of how the integration of RTD enhances the performance of LinCIR, effectively capturing
the semantic meaning of the modification descriptions while preserving the relevant visual information from the reference
image.

E. Discussion and limitation
First, we have mainly focused on evaluating the integrability of RTD with representative projection-based CIR methods
[3, 9, 20]. However, we have not yet explored or tested the extensibility of RTD to other CIR approaches that achieve strong
performance, such as those utilizing human-annotated CIR triplets (supervised) [2], synthetically generated CIR triplets
[8, 12, 27], or training-free methods [11]. Given the core motivation behind RTD, its adaptability to those CIR approaches that
directly train fusion modules or backbones using CIR triplets may be limited. However, considering the strong performance
and practical advantages (such as efficient training and inference) offered by projection-based CIR methods compared to
other variants, we believe that integrating RTD with them remains a valuable direction in the CIR domain. Second, RTD
addresses only a specific aspect of task discrepancy in projection-based CIR methods by focusing solely on the text encoder,
leaving the projectors and image encoder unchanged. However, considering the broad applicability of RTD to projection-based
methods and the relatively high computational cost of forward passes through the image encoder, we believe this targeted
focus offers the most practically viable direction. We leave further exploration of other components for future work. Third, as
a post-hoc method, RTD naturally depends on the underlying backbones and projectors. While this can be seen as a limitation,
it also underscores the versatility of RTD, as it can be easily applied to a wide range of existing methods. Moreover, the ease
of constructing goal-specific text triplets, combined with the simplicity of RTD, makes it a promising direction for future
improvements and more complex scenarios. Finally, as RTD uses text triplets, its performance depends on the quality of
training text triplets. However, as shown in Tab. 6, it remains robust across diverse triplet types, including template-based
ones. With the rise of LLMs, generating high-quality text triplets has become much easier (than image counterparts), further
enhancing the practicality and scalability of RTD.



F. Societal Impacts
Although our paper demonstrates promising outcomes in the ZS-CIR task, further examination of the data and the model
is essential prior to practical deployment. Since our method focuses mainly on optimization for accuracy, unwanted social
implications can occur. For example, real-world images from databases and user-generated text may inadvertently cause
harmful cases.
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