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Supplementary Material

A1. More Examples
We provide additional examples of hard negatives for the
color and left-right categories in Fig. A1 and Fig. A2, respec-
tively.

We include examples for the replacement and addition
arithmetic types (omitted in Fig. 4) in Fig. A3 and Fig. A4.
As mentioned in Section 4, we omit the addition cases for
the spatial reasoning and size categories, as these cases rely
on semantic relations defined between two objects. In these
cases, as shown in Fig. A4, the conditioning text (such as “is
ahead of” or “behind” for spatial reasoning, and “the bigger”
or “the smaller” for size) cannot be effectively represented in
an image with an empty background, as the relative location
and size of objects cannot be clearly defined.

Figure A1. Examples of hard negatives in MA-CIR with “color”
category

Figure A2. Examples of hard negatives in MA-CIR with “left-
right” category

A1.1. Examples of human evaluation.
As shown in Fig. A5, we incorporate the instructions and
examples used in human evaluation for MA-CIR. Each eval-
uator assesses whether the reference image, conditioning

text, and target image are appropriately composed based on
the specified composition and condition types and whether
the generated image is reasonable to recognize the corre-
sponding composition or condition types.

A2. Additional Details and Results
A2.1. Results on backbone size and type
We assess the impact of backbone size and type with various
methods. As verified in Sec. 6, simply using different back-
bones has only a marginal impact. The entire results for Fig.
5 and Fig. 6 are also included here.

Table A1. Impact of fine-tuned backbone types. (Neg-CLIP and
FSC-CLIP)

Method Size LR TB SR S AC C OR NO Avg
LinCIR [6]

ViT-B/32
19.4 22.6 21.7 17.3 23.6 21.8 16.1 16.4 19.9

LinCIR [6] + Neg [19] 24.6 25.1 10.6 19.6 22.7 23.5 20.7 23.1 21.2
LinCIR [6] + FSC [14] 25.0 24.7 20.5 24.4 28.9 23.8 17.5 20.9 23.2

LinCIR [6] ViT-L/14 21.4 27.6 18.6 20.2 25.2 26.9 21.8 25.0 23.3
LinCIR [6] + FSC [14] 24.6 30.9 28.0 21.4 31.4 21.4 14.7 20.2 24.1

Slerp [7]
ViT-B/32

23.0 18.5 21.7 20.8 28.1 22.4 14.0 16.4 20.6
Slerp [7] + Neg [19] 23.4 28.4 23.6 22.0 28.9 21.4 13.0 17.9 22.3
Slerp [7] + FSC [14] 24.6 28.0 29.8 28.0 31.8 19.7 14.7 17.5 24.3

Slerp [7] ViT-L/14 23.0 18.5 21.7 20.8 28.1 22.4 14.0 16.4 20.6
Slerp [7] + FSC [14] 31.8 32.1 24.2 23.8 29.3 21.8 15.1 18.7 24.6

Table A2. Impact of backbone sizes (ViT-B/32, ViT-L/14, ViT-
G/14).

Method Size LR TB SR S AC C OR NO Avg

LinCIR [6]
ViT-B/32 19.4 22.6 21.7 17.3 23.6 21.8 16.1 16.4 19.9
ViT-B/16 23.0 25.1 21.7 25.6 25.6 23.1 19.0 19.8 22.9
ViT-L/14 21.4 27.6 18.6 20.2 25.2 26.9 21.8 25.0 23.3
ViT-H/14 29.0 25.5 16.2 22.0 24.0 20.8 20.4 23.1 22.6
ViT-G/14 21.4 23.1 18.0 17.3 31.0 22.5 26.3 23.9 22.9

Slerp [7]
ViT-B/32 16.7 25.1 21.7 23.2 31.0 20.1 16.5 15.3 21.2
ViT-B/16 22.6 20.6 21.7 22.0 26.9 18.7 15.4 14.9 20.7
ViT-L/14 23.0 18.5 21.7 20.8 28.1 22.5 14.0 16.4 20.6
ViT-H/14 26.6 23.9 22.4 21.4 29.3 22.5 19.0 16.4 22.6
ViT-G/14 23.0 21.4 28.6 22.0 28.5 19.7 16.1 13.1 21.6

CIReVL [9]
ViT-B/32 28.6 17.3 23.0 37.5 24.4 38.4 29.8 35.1 29.3
ViT-L/14 30.4 24.7 20.7 30.6 21.4 32.3 19.3 23.1 25.3
ViT-G/14 32.1 21.8 25.5 39.9 30.2 42.9 31.9 34.3 32.3

MagicLens [20] ViT-B/32 36.1 32.1 27.3 30.4 26.9 33.3 10.9 19.4 27.0
ViT-L/14 35.7 34.6 30.4 28.0 31.0 38.4 14.0 19.8 29.0

SPRC [1] ViT-L/14 28.2 29.6 25.5 32.7 31.0 31.6 15.8 22.4 27.1
ViT-G/14 25.0 35.4 28.6 28.6 34.7 27.9 13.0 24.3 27.2

A2.2. Results on additional baselines (MCL [10]
and CoVR [18])

In Tab. A3, we additionally evaluate two baselines trained
on synthetic CIR triplets: CoVR fine-tunes BLIP backbones,



Figure A3. Examples of “replacement” arithmetic type for each category are included.

Figure A4. Examples of “addition” arithmetic type for each category are included.

Figure A5. Instructions for human evaluation.

while MCL trains adapter modules atop a frozen LLM. Con-
sistent with our main results, both show limited performance
on MA-CIR, suggesting a possible need for more carefully
designed synthetic datasets and LLM adaptation.

Method LR TB SR S A C OR NO Avg
CoVR [18] 18.7 25.9 18.0 19.0 34.3 24.8 16.5 17.4 21.8
MCL [10] 20.6 23.0 24.2 22.0 32.6 31.3 14.7 19.4 23.5

Table A3. Additional baselines for MA-CIR



Table A4. More results on E5-V and “Ours”

Method MA-CIR CIRCO
mAP@5

CIRR
R@1

FashionIQ
LR TB SR S A C OR NO Avg R@10 R@50

E5-V [8] (official repo) 40.1 30.9 26.1 26.8 40.1 41.8 31.6 34.7 34.0 20.5 33.9 31.8 53.8
E5-V [8] (reproduced) 38.4 28.8 21.3 25.7 35.3 43.2 32.3 34.3 32.4 17.6 30.9 28.4 49.1

Ours 47.7 37.8 41.6 56.9 46.6 58.6 41.7 57.2 48.5 26.5 36.8 29.6 50.8

Figure A6. Generation pipeline.

A2.3. Implementation details on our adaptation.

We use LLaVA-NeXT-8B [12], built on LLaMA-3 8B, with
a frozen ViT-L/14 as the visual encoder. The LLM of LLaVA
is fine-tuned for up to 2000 iterations with a batch size of
64 using a singla A100 Gpu. The best validation model for
CIRR R@1 score (val split) is chosen following [6]. We em-
ploy QLoRA and gradient checkpointing with DeepSpeed
ZeRO-2 for efficient training. The training prompt follows
the format: “[Tr] that modifies this image with [Tc]. De-
scribe the modified image in one word: ”. The prompt for
generating our text triplets is described in Fig. A7. Since
the training environment of the original E5-V model may
differ from ours, we reproduce E5-V under our setup. Due
to the high variance observed in reproducing E5-V, we re-
port the average results over twelve runs for both “E5-V
(reproduced)” and “Ours”. “E5-V (official repo)” refers to a
single-run result. As shown in Tab. A4, “Ours” consistenly
and signifcantly outperforms both “E5-V (reproduced)” and
“E5-V (official repo)”. While “Ours” slightly underperforms
the official E5-V on FashionIQ, it surpasses the fairly re-
produced E5-V under identical settings, demonstrating the
effectiveness of our simple remedy.

A2.4. Results for each arithmetic type in Tab. 1

We provide detailed results for each arithmetic type listed in
Tab. 1. All hard negatives are included in the evaluation as
in Tab. 1; however, the results are measured separately for
each arithmetic type. Note that the difference with results in
Tab. 2 is that all hard negatives are included in Tab. A5. As
explained in the Sec. 6, existing methods struggle more with
negation and replacement arithmetic types compared to the
addition type.

A2.5. Few-shot learning.

We apply few-shot fine-tuning to LinCIR, SEARLE, and
Bi-Blip4CIR on MA-CIR, updating all network parameters,
including CLIP backbones and projection module (or fusion
module). We use a batch-based contrastive loss function,
where the bi-modal query embedding qi and its correspond-
ing target image embedding vi are paired for contrastive
learning:

Lfew =
1

B

B∑
k=1

− log
e(c(qi,vi)/τ)

B∑
j=1

e(c(qi,vj)/τ)
(1)



Table A5. Detailed results for Tab. 1. N, R, A denotes an arithmetic types: Negation, Replacement, Addition, respectively. “Avg” value in
Tab. 1 may differ slightly from the one shown here, as the average is computed over the metrics available in each respective table.

Method
Left

Right
Top

Bottom
Spatial

Reasoning Size Action Color Object
Reasoning

Naive
Object Avg

N R A N R A N R A N R A N R A N R A N R A N R A

(a) Zero-shot

Text-only 3.6 23.8 6.0 5.8 22.8 11.5 2.5 33.8 - 0.0 17.9 - 8.6 29.6 28.8 0.0 7.3 14.7 0.0 3.6 9.7 0.0 6.2 10.3 11.2
Image-only 7.1 0.0 7.1 9.3 0.0 5.1 11.1 2.5 - 9.5 1.2 - 7.4 0.0 10.0 7.8 17.4 22.1 15.9 1.2 24.8 15.6 1.2 24.7 9.1
Image+Text 7.1 2.4 10.7 10.5 1.3 9.0 12.4 2.5 - 11.9 3.6 - 12.4 1.2 16.2 4.4 24.8 34.7 9.1 2.4 42.5 7.8 2.5 42.3 12.3

Slerp [7] 19.1 34.5 15.5 11.6 26.6 18.0 13.6 30.0 - 7.1 34.5 - 13.6 30.9 40.0 1.1 30.3 33.7 1.1 8.3 28.3 2.2 13.6 32.0 20.3
Slerp+TAT [7] 20.2 42.9 20.2 16.3 32.9 32.1 13.6 37.5 - 8.3 35.7 - 18.5 28.4 45.0 2.2 26.6 47.4 0.0 9.5 25.7 2.2 9.9 41.2 23.5

Pic2Word [16] 9.5 31.0 21.4 17.4 31.7 20.5 8.6 25.0 - 7.1 27.4 - 11.1 25.9 40.0 2.2 38.5 49.5 6.8 13.1 41.6 5.6 13.6 46.4 22.5
SEARLE [3] 20.2 25.0 22.6 23.3 29.1 26.9 17.3 21.2 - 15.5 21.4 - 14.8 23.5 45.0 2.2 26.6 45.3 2.3 14.3 33.6 5.6 13.6 40.2 22.2
LinCIR [6] 14.3 26.2 23.8 25.6 25.3 32.1 12.4 25.0 - 13.1 27.4 - 8.6 24.7 42.5 3.3 27.5 48.4 1.1 14.3 43.4 5.6 14.8 51.5 23.2

FTI4CIR [11] 15.5 23.8 23.8 24.4 34.2 28.2 8.6 27.5 - 9.5 25.0 - 18.5 22.2 56.2 7.8 33.0 55.8 2.3 10.7 50.4 2.2 8.6 50.5 24.5
Context-I2W [17] 8.3 25.0 20.2 18.6 32.9 20.5 12.4 28.8 - 6.0 25.0 - 13.6 28.4 43.8 3.3 31.2 46.3 2.3 14.3 31.9 3.3 12.4 44.3 21.5

LinCIR+RTD [4] 14.3 26.2 29.8 17.4 34.2 33.3 11.1 33.8 - 15.5 29.8 - 9.9 24.7 53.8 6.7 44.0 55.8 3.4 21.4 41.6 12.2 23.5 53.6 27.1
CIReVL [9] 32.1 42.9 13.1 24.4 30.4 5.1 22.2 31.2 - 31.0 46.4 - 22.2 24.7 31.2 33.3 46.8 38.9 17.0 26.2 33.6 24.4 40.7 37.1 29.8

E5-V [8] 45.6 32.9 36.7 21.6 30.1 35.6 20.3 22.3 - 18.2 33.2 - 18.3 18.4 69.5 17.8 46.6 63.4 11.6 8.8 65.9 19.0 13.2 66.1 32.5
Ours 70.7 37.3 34.9 40.6 38.0 34.6 43.7 39.5 - 63.3 50.5 - 44.1 30.0 65.9 55.4 58.0 62.5 42.1 19.8 57.5 62.3 36.7 69.4 48.0

(b) Supervised CIR

Combiner [2] 4.8 2.4 9.5 7.0 2.5 14.1 11.1 2.5 - 7.1 4.8 - 11.1 1.2 16.2 4.4 24.8 29.5 12.5 2.4 37.2 12.2 2.5 33.0 11.5
Bi-Blip4CIR [13] 19.0 35.7 22.6 15.1 26.6 20.5 12.3 16.2 - 17.9 27.4 - 17.3 17.3 46.3 20.0 36.7 44.2 5.7 14.3 39.8 14.4 16.0 41.2 23.9

SPRC [15] 33.3 35.7 15.5 33.7 38.0 16.7 17.3 33.8 - 22.6 42.9 - 12.4 21.0 60.0 12.2 33.0 48.4 6.8 15.5 23.0 11.1 17.3 37.1 26.7

(c) Synthetic data-based CIR

Compodiff [5] 13.1 22.6 16.7 11.6 34.2 19.2 19.8 30.0 - 9.5 31.0 - 9.9 28.4 32.5 3.3 45.0 28.4 8.0 19.1 31.0 6.7 22.2 41.2 22.0
MagicLens [20] 44.1 41.7 21.4 34.9 41.8 26.9 29.6 31.2 - 21.4 34.5 - 12.4 30.9 50.0 15.6 44.0 53.7 3.4 7.1 27.4 10.0 7.4 39.2 28.6

Table A6. Few-shot learning with SEARLE, LinCIR, and Bi-
Blip4CIR.

Method LR TB SR S AC C OR NO Avg
SEARLE [3] 22.6 26.3 19.3 18.5 27.7 25.2 18.3 20.5 22.3
+Few-shot FT 22.6 25.1 18.0 20.2 22.7 28.9 23.5 25.4 23.3

LinCIR [6] 21.4 27.6 18.6 20.2 25.2 26.9 21.8 20.5 23.3
+Few-shot FT 17.5 24.7 14.9 17.3 25.6 25.9 20.4 22.0 21.0

Bi-Blip4CIR [13] 25.8 20.6 14.3 22.6 26.9 34.0 21.8 24.6 23.8
+Few-shot FT 27.0 22.6 16.8 27.4 26.4 32.3 20.0 23.5 24.5

where c(·, ·) denotes the cosine similarity, B is the batch size,
and τ is a temperature. Here, the bi-modal query embedding
is obtained using the prompt “a photo of [$] that
[Tc]”, and [$] is the projected text token embedding of Ir
with the projection module. Both the reference and target
image embeddings are obtained using the same visual en-
coder. Although LinCIR was originally trained on text-only
data, we fine-tune it using MA-CIR triplets (which include
images), following the same protocol as other methods. The
small-scale training MA-CIR sets (10-64 samples), which do
not overlap with the evaluation set, are used for fine-tuning.
We follow the default training setup for Bi-BLIP4CIR. For
LinCIR and SEARLE, we set the learning rate to 1e − 5

when updating all modules, including the text encoder, im-
age encoder, and projection module. The maximum number
of training iterations is set to 50 for all methods. In Ta-
ble A6, all results show marginal effectiveness, highlighting
the challenging nature of our benchmarks, which cannot be
addressed by simple methods with small-scale training data.

A3. Qualitative Results

In Figs. A8 to A10, we present the top-5 predictions of the
baseline methods: Slerp [7], LinCIR [6], SPRC [1], Mag-
icLens [20], E5-V [8], and our adaptation method. In the
figure, we observe that the zero-shot CIR methods (Slerp,
LinCIR) struggle to handle both arithmetic operations (e.g.,
negation and replacement) and complex semantic relation-
ships. In contrast, MagicLens, E5-V, and our adaptation
method demonstrate better performance in capturing arith-
metic operations, with relevant images ranked higher. In
particular, E5-V and our adaptation method, which leverage
multi-modal large language models (MLLM), exhibit a su-
perior understanding of both arithmetic and semantic types
compared to other methods.



Figure A7. Prompt for text triplet generation by LLMs used in Section 5. It enables independent modification of subject and attribute
information.

Figure A8. Retrieval results in MA-CIR with “replacement” and “size” type.



Figure A9. Retrieval results in MA-CIR with “negation” and “color” type.

Figure A10. Retrieval results in MA-CIR with “negation” and “color” type.



A4. Impact of artifacts from generative models
Each MA-CIR triplet is constructed through careful manual
and iterative refinement as shown in Fig. A5 and Fig. A6.
Although minor artifacts may be present, human evaluators
consistently judged the MA-CIR triplets to be appropriate for
capturing the intended compositional and arithmetic types.
Moreover, to assess whether the models evaluated in MA-
CIR exhibit similar behavior in the absence of generative arti-
facts, we construct a small-scale dataset (≈ 100 queries) that
avoids the use of generative or inpainting models. Instead,
we capture real photographs of physical objects arranged
in compositions resembling those in MA-CIR. The results
closely align with the original MA-CIR trends, with average
deviations under 3% from the scores in Tab. 1, suggesting
that minor generative artifacts do not significantly affect the
core findings.

A5. Discussions
MA-CIR does not cover all semantic categories (e.g., object
count, or viewpoint changes). However, as discussed in the
Introduction, MA-CIR is designed to complement existing
CIR benchmarks by focusing on overlooked areas (e.g., nega-
tion and replacement for complex semantics), with sufficient
category diversity to support this focus. Full coverage of all
semantic categories is left as future work.

Beyond R@1, we can include higher values of k in R@k,
but this may introduce ambiguity in interpreting MA-CIR
results, as candidate images differ only in localized regions.
Namely, this can lead to visually similar but semantically
incorrect retrievals being counted as correct, inflating scores
and potentially misleading fine-grained evaluations of com-
positional understanding. For this reason, we do not report
R@k beyond R@1.

Although we employ a refinement and evaluation process
to obtain high-quality images, there may still be inherent
biases introduced by the image generation (or inpainting)
model as well as the human-in-the-loop selection and refine-
ment procedures. We leave more systematic bias analysis
and mitigation strategies as future work.

While our simple remedy improves E5-V on MA-CIR in
all experiments, the performance gain in Tab. 2 is relatively
smaller than Tab. 1. This suggests that the remedy is partic-
ularly effective for improving robustness to hard negatives,
whereas further gains in understanding complex semantics
may require more carefully constructed text triplets or more
advanced methods.
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