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A. Implementation Details
We provide the details of the experiment setup, dataset pre-
processing, proposed unbalanced timestep sampling strat-
egy, and architecture design of JointDiT.

A.1. Experiment Setup
We will describe in detail the configurations we used for
joint generation, depth estimation, depth-conditioned image
generation, and Joint RGB-Depth feature visualization. We
consistently use 20 denoising steps across all experiments.
Joint generation. We generate images and their cor-
responding depth maps by initially setting tx = 0 and
ty = 0 by sampling noises from a standard normal dis-
tribution. While the main paper presents joint generation
results conditioned on text prompts, we find that joint gen-
eration occurs even without a text prompt. To compare with
JointNet [35] and LDM3D [29], we generate 512×512 im-
ages and depth maps jointly. Despite being trained only
on a 512×512 resolution dataset, we observe that Joint-
DiT successfully operates at varying resolutions, such as
1024×1024.

†Work done during an internship at Microsoft Research Asia.

Type LoRA applied components

MM-DiT

img mod.lin
img attn.qkv
txt mod.lin
txt attn.qkv

img attn.proj
txt attn.proj

P-DiT linear1
modulation.lin

Input stage
vector in.in layer

vector in.out layer
txt in

Table S1. LoRA-applied components. To build the depth branch
extending the original Flux model [3], we add LoRAs to MM-DiT,
P-DiT, and Input stage.

Depth estimation. To estimate the depth map from a given
image, we set tx = 1 and ty = 0 and provide an empty text
prompt. Unlike Marigold [13] and Geowizard [8], we do
not use any ensemble technique. Since JointDiT can op-
erate at varying resolutions, we use the NYUv2, ScanNet,
KITTI, and DIODE datasets [2, 4, 28, 31] at their original
resolutions as model inputs. For the ETH3D dataset [27],
which has a 4K resolution, we resize the images while pre-
serving the aspect ratio so that the larger dimension is set
to 1024 pixels. This preprocessing strategy is consistently
applied to the comparison methods as well, and for methods
that require a fixed input resolution, we use their designated
resolution for evaluation.

Depth-conditioned image generation. We generate
depth-conditioned images from given text prompts by ini-
tially setting tx = 0 and ty = 1. The conditioning
depth maps are obtained by Depth-Anything-V2 [34]. For
the experiment of Sec. 4.3 in the main paper, we fol-
low the evaluation setting of UniCon [16] to compare
with Readout-Guidance [20], ControlNet [36], and Uni-



Con. Specifically, we train our model and these methods
on the same training dataset, which includes 16k images of
PascalVOC [7], depth maps from Depth-Anything-V2 [34],
and text prompts extracted using BLIP2 [15]. For the eval-
uation, using the selected 6k images from the OpenIm-
ages dataset [14], we estimate depth maps using an off-the-
shelf model and generate images conditioned on these depth
maps and text prompts from BLIP2.
Joint RGB-Depth feature visualization. For the feature
visualization of Sec. 4.4 in the main paper, we strictly fol-
low the method proposed by Tumanyan et al. [30], and vi-
sualize the PCA results of the features from each MM-DiT
block. Similar to Tumanyan et al., who collected images
from semantically related domains (such as humanoid pic-
tures) for visualization, we perform joint generation on 50
samples for each domain, i.e., pixel art style illustrations
and indoor scenes that are used in the two examples shown
in Fig. 6 of the main paper. We extract features at approx-
imately 50% of the generation process (i.e., t = 0.48), and
apply PCA to visualize them. Due to the architecture struc-
ture of the Flux model, which applies positional encoding
immediately before every attention layer, we subsample the
even indices before applying PCA.

A.2. Data Preprocessing
We randomly sample RGB frames from the internal video
dataset, which has a resolution of 512×512 or higher. The
sampled frames are resized so that the smaller dimension
(width or height) is 512 pixels, followed by a 512×512 cen-
ter crop. We obtain text prompts from the 512×512 images
using LLaVA [19]. To generate the corresponding disparity
maps, we use Depth-Anything-V2 and normalize them so
that the maximum and minimum values are 1 and 0, respec-
tively.
Synthetic dataset. We further fine-tune our model to ver-
ify the depth estimation capability itself. We utilize the Hy-
persim [23], Replica [12], IRS [32], and MatrixCity [17]
datasets for fine-tuning. We first unify the ground-truth
depth or disparity maps of the synthetic datasets into dis-
parity maps because our model was previously trained on
the disparity maps of Depth-Anything-V2. Thereafter, we
define invalid regions for each dataset. For example, in Ma-
trixCity, the depth of the sky was set to the maximum value,
while in Replica, there exist depth values that are closer
than the camera plane. Then, we apply the bias and scale
to the ground-truth disparity map so that the mean and stan-
dard deviation match those of Depth-Anything-V2’s dispar-
ity estimation at valid regions. The annotations in invalid
regions are replaced with Depth-Anything-V2’s estimation.
This process allows us to obtain annotations for invalid re-
gions while ensuring consistency in depth map characteris-
tics, which can vary significantly when normalized by max-
imum and minimum values due to dataset-specific invalid

regions.

A.3. Unbalanced Timestep Sampling Strategy
When applying the unbalanced timestep sampling strategy,
the timesteps, i.e., tx and ty , are separately sampled from
the timestep distributions f(t) and g(t), respectively, or vice
versa. This is applied with a 50% probability during train-
ing, while for the remaining 50%, the same timestep sam-
pled from f(t) is used for both tx and ty . The timestep
distribution is as follows:

f(t) = 1− σ(z) · s
1 + (s− 1) · σ(z)

, where z ∼ N (0, 1). (1)

The σ(·) denotes the sigmoid function. In f(t), which is
suggested by our base training code†, s is set to 3.1582. We
set s to 0.25 to obtain g(t).

A.4. Architecture of JointDiT
To build the depth branch, we add LoRAs [10] to the origi-
nal Flux architecture [3]. Specifically, we add LoRAs to the
components connected before and after the attention mech-
anisms of the multi-modal diffusion transformer (MM-DiT)
and parallel diffusion transformer (P-DiT) blocks [5, 6] that
constitute Flux. Table S1 summarizes the LoRA-applied
components in the MM-DiT and P-DiT blocks. We use a
LoRA rank of 64 for both MM-DiT and P-DiT, and apply
relatively larger ranks of 512 or 1024 to the input stage. The
alpha value is set to half of the corresponding rank.

To design the joint connection module, we adopt the
joint cross-attention module from UniCon [16], followed
by a zero-initialized linear projection layer. The adaptive
scheduling weight is applied subsequently.

B. Additional Experiments
B.1. Advantages of Joint RGB-Depth Modeling
As mentioned in the main paper, we observe that joint RGB-
Depth generation tends to yield more plausible 3D lifting
results compared to estimating depth from generated im-
ages. Figure S1 presents the 3D lifting results by showing
top and side views. When using the depth generated by our
JointDiT, the results exhibit more well-structured and volu-
metric 3D geometry than those produced by Marigold [13]
and Depth-Anything-V2 [34].

Furthermore, as also discussed in the main paper, our
joint generation approach enables plausible depth synthesis
even in illustration domains, where depth estimation meth-
ods often struggle. Additional qualitative results are pre-
sented in Figure S6.

B.2. Jointly Generated Image Quality
We quantitatively compare the quality of jointly generated
images from JointNet [35], LDM3D [29], and our method.

†https://github.com/kohya-ss/sd-scripts/tree/sd3
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Figure S1. Comparison of 3D lifting results from our JointDiT, Marigold, and Depth-Anything-V2. The jointly generated depth from
JointDiT leads to more coherent 3D shapes and better preservation of structural details compared to the estimated depths.

Generation Method ImageNet 6K Pexels 6K MSCOCO 30K

modality FID↓ IS↑ CLIP↑ FID↓ IS↑ CLIP↑ FID↓ IS↑ CLIP↑

Image SD v2.1 [24] 23.13 40.49 31.16 20.53 24.73 31.37 15.00 37.13 31.37
Flux 25.96 46.12 30.90 24.71 25.32 31.09 22.85 41.40 30.77

JointNet [35] 25.92 37.23 30.50 20.28 24.94 30.72 12.62 35.88 30.80
Image & depth LDM3D [29] 37.72 31.73 30.45 32.50 20.26 30.52 25.58 29.36 30.81

Ours 24.26 37.81 30.51 19.87 22.51 30.71 11.27 34.35 30.76

Table S2. Quantitative evaluation on jointly generated images. We present the performance of the baseline model for comparison. Our
method achieves performance comparable to JointNet, while LDM3D demonstrates relatively poor results. Compared to our base model,
i.e., Flux, we achieve lower FID scores but also lower IS scores, likely due to the limited size of the training dataset.

For evaluation, we use the dataset from Section 4.4 of the
main paper, i.e., ImageNet 6K, Pexels 6K, and MSCOCO
30K. We measure the Inception Score (IS) [26], Fréchet
Inception Distance (FID) [9], and CLIP similarity [21] as
our evaluation metrics. Table S2 summarizes the results.
We also include the results of baseline diffusion models,
i.e., Stable diffusion [24] and Flux [3]. Interestingly, Flux
achieves relatively high FID scores across all evaluation
datasets despite its outstanding text-to-image generation ca-
pability. We observe that Flux often generates stylized im-
ages. Figure S2 shows samples from ImageNet 6K and the
corresponding images generated by Flux. The generated
samples appear surreal, which leads to a higher FID be-
tween them and the real image dataset. Our model achieves
a lower FID score than Flux by learning the joint distribu-
tion of images and their corresponding depth maps on the
real dataset. However, our IS score is lower than that of
Flux, likely due to the limited size of the training dataset.

Among the joint generation models, LDM3D shows rela-
tively poor performance. Our method achieves comparable
performance to JointNet. To further assess image genera-
tion quality, we evaluate the human preference score using
ImageReward [33], a trained model that estimates human
preference for given text prompts and images. We measure
the human preference ranking of the images generated by

Flux

Original
image

Figure S2. Comparison between original images and images
generated by Flux [3] on the ImageNet [25] 6K dataset. Flux
often generates stylized images, which leads to a higher FID be-
tween the real image dataset and the generated images.

the joint generation model from the same text prompt. Ta-
ble S3 summarizes the percentage of each method on each
evaluation dataset. Our method shows the highest rank 1
percentage and the lowest rank 3 percentage across all eval-
uation datasets. Compared to LDM3D, JointNet achieves
moderately better performance.



Method
ImageNet 6K Pexels 6K MSCOCO 30K

ImageReward ImageReward ImageReward

Rank1↑ Rank2 Rank3↓ Rank1↑ Rank2 Rank3↓ Rank1↑ Rank2 Rank3↓
LDM3D [29] 27.56 35.90 36.54 26.21 33.42 40.37 27.74 34.04 38.22
JointNet [35] 29.91 33.32 36.77 31.65 33.87 34.48 28.85 35.70 35.46

Ours 42.53 30.79 26.69 42.14 32.72 25.15 43.41 30.26 26.32

Table S3. Human preference evaluation on images jointly generated by joint generation methods [29, 35] and Ours. We assess the
human preference using ImageReward [33] that was trained to estimate human preference. With both joint generation models and ours, we
conduct joint generation using the same text prompts and rank the results with ImageReward, obtaining the percentage for each ranking.
Our JointDiT achieved the highest rank 1 percentage and the lowest rank 3 percentage across all datasets.

B.3. Ablation of the LoRA’s Rank
We adopt a LoRA rank of 64 in the DiT blocks of our
JointDiT model. To analyze the effect of the LoRA rank,
we train our model with different LoRA ranks and evalu-
ate depth estimation performance on the NYUv2 and Scan-
Net datasets [4, 28]. As shown in Table S4, as the LoRA
rank increases, the depth estimation performance improves,
achieving the best performance at the LoRA rank of 64. We
did not increase the LoRA rank beyond 64 because the num-
ber of model parameters grows exponentially.

B.4. Analysis of Failure Cases
We observe that our method shares similar limitations with
depth estimation methods [13, 34], particularly in handling
reflective surfaces such as mirrors. As shown in Fig. S3,
both our model and depth estimation models fail to recog-
nize mirrors as flat and planar regions.

B.5. Joint Panorama Generation
JointDiT can be used for RGB-D panorama generation as
well. For panorama generation, we strictly follow the Joint-
Net [35] method combining whole and tile-based denoising
strategies [1, 11], to ensure a fair comparison. We denoise
image and depth tiles by using joint generative diffusion
models. During only early steps, we perform denoising on
the entire panorama, and throughout all steps, we aggregate
model estimations from both overlapped individual tiles and
the whole panorama. Figure S4 demonstrates the RGB-D
panorama results. Compared to JointNet, JointDiT shows
clear and structurally reasonable images along with sharp
depth maps.

C. Additional Qualitative Results
In this section, we demonstrate diverse qualitative results on
depth estimation and depth-conditioned image generation.
Joint generation. Utilizing our JointDiT model, we gener-
ate images and corresponding depth maps. We visualize the
images and depths with their 3D lifting results. As shown in

LoRA rank NYUv2 [28] ScanNet [4]

AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑
16 9.1 90.6 9.8 89.7
32 6.6 95.7 8.5 92.4

64 (Ours) 5.7 96.9 6.6 95.7

Table S4. Ablation studies of the rank of LoRA. We evaluate
the depth estimation performance on NYUv2 and ScanNet while
varying the LoRA rank. The results show that performance im-
proves as the LoRA rank increases.

Mirror

Input image Depth-Anything-V2 Marigold Ours

Figure S3. Failure cases in depth estimation. Red and Blue areas
indicate near and far depth predictions, respectively.

Fig. S5, our joint generation results are geometrically rea-
sonable in 3D, with the surface characteristics of the im-
ages being well-preserved in the 3D space (e.g., smooth or
rough textures). Furthermore, Figure S6 highlights the ef-
fectiveness of our joint generation approach in illustration
domains, where plausible 3D structures are obtained despite
the inherent difficulty of estimating geometry from stylized
images.

Depth estimation. We visualize the depth estimation re-
sults of joint generation methods that support depth esti-
mation, i.e., JointNet [35], UniCon [16], and Ours. We
obtain the depth estimation results from the publicly avail-
able code. Specifically, while UniCon does not provide raw
depth through its Gradio demo, we can obtain depth esti-
mation visualization results. To estimate depth, we pro-
vide each model with empty text prompts. To demon-
strate the results across various scenarios, we acquire depth
maps estimated from the NYUv2, ScanNet, and MSCOCO



datasets [4, 18, 28]. Figure S7 illustrates the results. Com-
pared to JointNet and UniCon, our method captures fine de-
tails in the depth and the shape of thin objects. This aligns
with the trends observed in the quantitative results.
Depth-conditioned image generation. We visualize the
depth-conditioned image generation results of JointNet,
UniCon, and our method. We utilize publicly available code
for the other two methods. To generate the results, we ob-
tain depth maps and text prompts from ImageNet 6K using
Depth-Anything-V2 [34] and LLaVA [19]. For JointNet,
we provide the depth estimation from MiDaS [22], as it was
trained using MiDaS’ depth estimation. Figure S8 demon-
strates the results. JointNet and UniCon generally gener-
ate images that match the given depth and text prompts, but
they sometimes do not fully understand the text prompt. For
example, UniCon generated a green dog instead of a green
frisbee, and JointNet failed to fully generate a red flower.
In comparison, our JointDiT shows generation results that
are well aligned with the given depth and text prompts, and
we observe that it generates more realistic images than the
other models.
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Expansive view of an ancient Roman city with grand marble buildings, a massive 
colosseum, peoples, and lively markets..

A luxurious restaurant with elegant chandeliers and panoramic city 
views. Tables are adorned with white tablecloths, and candles.

JointNet

Panoramic view of a tropical beach with golden sand stretching endlessly. 
Palm trees sway, and wooden boats float near the shore.

A grand ancient library with towering bookshelves, spiral staircases, 
and candlelit wooden desks. 

Ours

Figure S4. RGB-D panoramic generation results of JointNet and Ours. Our JointDiT generates more three-dimensional and sharper
images and depth maps compared to JointNet.
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“Realistic portrait of an elderly man with a white beard, round glasses, and a flat cap”

RGB Depth 3D Point Cloud

“A small black kitten balancing a levitating potion bottle filled with shimmering blue liquid”

“Pasta with mushrooms and bacon”

“A massive ancient tree towering over a castle on a floating island, with waterfalls …”

“A colorful pineapple on a beach”

“A ethereal rainbow feather with a perfect gradient …”

Figure S5. Joint generation results of JointDiT. The joint generated images and depths are geometrically reasonable in 3D.



RGB Depth 3D Point Cloud

Figure S6. Joint generation results in illustration domains. The jointly generated images and depths from JointDiT produce geometri-
cally plausible 3D structures, even in stylized domains.



UniCon OursJointNetInput image

Figure S7. Depth estimation results of joint generation models. We visualize the depth estimation results of JointNet, UniCon, and
our method on the NYUv2, ScanNet, MSCOCO dataset [4, 18, 28]. Our method shows sharp and fine-detailed depth visualization, which
aligns with the trends observed in the qualitative results.



A red flower with
yellow centers is

blooming

A man in a suit is
playing the piano

Three dogs
playing with a
green frisbee

A black and white
photo of llamas
with backpacks

A cow in a field
with other cows

A gray fox sitting
on the ground

near a road

UniCon OursInput depth Original image JointNet

Figure S8. Depth-conditioned image generation results of JointNet, UniCon, and Ours. JointNet and UniCon often fail to reflect
the text prompt properly, e.g., the green dog generated by UniCon and the flower with green petals generated by JointNet. Our JointDiT
generates images that better reflect the text prompt and depth map, producing more realistic results compared to other methods.
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