
Cycle-Consistent Learning for
Joint Layout-to-Image Generation and Object Detection

Supplementary Material

SUMMARY OF THE APPENDIX
This appendix contains additional details for ICCV 2025

paper, titled Cycle-Consistent Learning for Joint Layout-to-
Image Generation and Object Detection, which is organized
as follows:

• §A discusses our limitations, directions of our future
work, and societal impact.

• §B introduces evaluation metrics and the datasets used
in our experiments.

• §C gives detailed settings regarding training and testing.

• §D provides the pseudo code of GDCC.

• §E gives details regarding annotation-free synthetic
data, including visualizations of synthesized examples.

• §F depicts more qualitative results of generation.

• §G provides more qualitative results of detection.

A. Discussion and Outlook
A.1. Limitation and Future Work
In this work, we explore the inherent duality between
layout-to-image (L2I) generation and object detection
(OD). However, due to restrictions in computational re-
sources, this duality is not extended to a broader range
of controllable T2I generation and discriminative models,
such as segmentation mask controllable models paired with
segmentation models, and depth map controllable models
paired with depth models, etc.. In future work, we aspire to
expand the end-to-end joint learning framework for broader
controllable T2I generation and discriminative models. In
addition, our experiments in Table 2 and Table 3 also sug-
gest that our highly realistic generated images aligned with
synthesized layouts can benefit the training of object detec-
tors. Therefore, another essential future direction deserving
of further investigation is the construction of a large-scale
synthetic dataset comprising synthesized layouts and their
corresponding images generated by advanced L2I genera-
tion models. Overall, we believe the results presented in
this paper warrants further exploration.

A.2. Social Impact
This work investigates the inherent duality between the L2I
generation and OD and introduces GDCC learning frame-
work that jointly optimizes both tasks in an end-to-end man-
ner. On the positive side, the approach advances both L2I

generation and OD model accuracy, leading to more precise
scene synthesis and object localization. The improved L2I
generation model can generate realistic images consistent
with layouts, benefiting fields such as content creation and
synthesized dataset construction. Meanwhile, the enhanced
OD model offers advantages in areas like autonomous driv-
ing and surveillance systems. For potential negative so-
cial impact, the ability to generate highly realistic images
could be misused to produce misleading or fake content,
raising significant ethical concerns around surveillance, pri-
vacy, and the potential for digital manipulation.

B. Evaluation Metrics and Datasets
B.1. Evaluation Metric
L2I generation models are evaluated using two main crite-
ria: fidelity and trainability:

• Generation fidelity assesses the consistency between the
generated object representations and the authentic dis-
tribution of images. Specifically, fidelity quality is mea-
sured using the Frechet Inception Distance (FID) [9]
from the perceptual perspective, while YOLO score pro-
posed by [12] is used to evaluate the alignment be-
tween conditional layouts and generated images. Pre-
trained object detectors are applied to generated images,
and their predictions are compared with corresponding
ground truth annotations to obtain YOLO score.

• Generation trainability is measured by re-training ob-
ject detection (OD) models on the generated and
real images with corresponding training layouts from
scratch. After that, the trained detector is evaluated on
the validation set using Average Precision (AP).

The object detectors are evaluated using detection accuracy:

• Detection accuracy evaluates the performance of object
detectors on the validation set before and after fine-
tuning using AP. It is measured by inferencing vali-
dation images using detectors and comparing the re-
sults with validation annotations for both pre-trained
and fine-tuned detectors . Although both take AP as
the evaluation metric, detection accuracy does not re-
quire training from scratch, which is significantly dis-
tinct from generation trainability.

B.2. Datasets
Our experiments are conducted on two widely used
datasets.

• COCO-Stuff [2] consists of bounding box annotations
covering 80 object classes and 91 stuff classes. Follow-
ing [4, 11, 12], objects occupying less than 2% of the
total image area are ignored, and only images with 3
to 8 objects are used, resulting in a dataset of 74,777
training images and 3,097 validation images.
During training, only filtered instances are used for
generation models. However, for detection models,
these instances must be re-filtered by selecting instances
from 80 object classes. This is because most detec-
tors are trained on the COCO 2017 [13] training set
which does not include 91 stuff classes in COCO-Stuff.
Therefore, with respect to all losses using detectors, in-
stances within the 91 stuff classes are excluded from the
loss computation. Furthermore, when computing Lpred,
small objects are not ignored to avoid introducing noise.
During evaluation, images are generated given filtered
layouts. Following [4, 12], FID is achieved by com-
puting the similarity between the generated images and
COCO 2017 validation images. YOLO score is ob-
tained by comparing the detected bounding boxes in the
generated images with the original COCO 2017 vali-
dation annotations for a fair comparison with previous
works. Detection accuracy is measured by inferencing
the COCO 2017 validation images using detectors and
comparing the results with COCO 2017 validation an-
notations.

• NuImages [3] offers bounding box annotations across
10 categories and 6 camera views. We exclude im-
ages with more than 22 objects following [4], yielding
60,209 images for training and 14,772 images for vali-
dation.

C. Training and Testing Details
C.1. Training
We fine-tune the pre-trained generators i.e., GeoDiffu-
sion [4] and ControlNet [19], and a object detector, i.e.,
Faster R-CNN [17] for a few more epochs. For GeoD-
iffusion, experiments on both COCO-Stuff [2] and NuIm-
ages [3] are performed.

When fine-tuning GeoDiffusion, only the U-Net de-
noiser parameters are updated, while all other parameters
remain fixed. The text prompt is replaced with a null text
with a probability of 0.1 to allow unconditional generation
following [4]. We adopt AdamW [10] with a momentum of
0.9 and a weight decay of 0.01. The learning rate is set to
3×10−5, and adjusted using a cosine schedule [16] with a
3,000-iteration warm-up. The batch size is 56. GeoDiffu-
sion is fine-tuned for 2 epochs on COCO-Stuff and 3 epochs
on NuImages, which is remarkably efficient. For Control-
Net, as the official implementation does not support bound-
ing boxes as conditional inputs, we first convert bounding

boxes into masks for conditional input and train on COCO-
Stuff . Then, we finetune the pretrained ControlNet us-
ing GDCC for 2 epochs by updating only the ControlNet-
specific parameters and keep all others frozen.

C.2. Testing
Our GDCC framework preserves the original architectures
of both L2I and OD models, as well as the layout encoding
approach of L2I models, ensuring that the inference speed
of each model remains unchanged. During image sam-
pling, PLMS scheduler [15] is used to sample images from
the NuImages dataset layouts for 100 steps with classifier-
free guidance (CFG) scale of 5.0, and from the COCO-
Stuff [2] dataset layouts for 50 steps with a CFG scale of
4.5. Following GeoDiffusion [4], for NuImages dataset [3],
fidelity is assessed using a Mask R-CNN [8] object detec-
tor pre-trained on the NuImages training set to achieve a
comparable YOLO score in LAMA [12]. For COCO-Stuff,
YOLOv4 [1] per-trained on COCO 2017 training set is used
to derive YOLO score following [4].

The pre-trained detector first performs inference on the
generated images, and the resulting predictions are then
compared with the corresponding ground truth annotations.
Following [4], FID [9] is computed by generating five im-
ages per layout for COCO-Stuff and one image for NuIm-
age to calculate the distance between generated images and
authentic images. All images are resized into 256 × 256 be-
fore evaluation. To assess the trainability, we augment the
original training data with generated images and their cor-
responding layouts, creating a unified dataset. We subse-
quently train Faster R-CNN [17] on this unified dataset us-
ing the standard 1× schedule. The model employs ResNet-
50 [7] pre-trained on ImageNet-1K [5] as its backbone and
FPN [14] as the neck. The trained detection models are
evaluated on the validation set.

D. Pseudo Code of GDCC

Algorithm 1 Pseudo-code of GDCC in a PyTorch-like
style.

"""
vae: mapping to latent space
scheduler: adding noise to an image or for
updating a sample
unet: predicting the noise
detector: object detector
x: input image (B x 3 x H x W)
l: input layout (B x 5)
l_ori: input layout before filtering (B x 5)
t: input text description (B x L)
encoder_hidden_states: output of text encoder(t)

noise: random sampled Gaussian noise
max_ts: max timestep for reward
resample_ts: re-weighting factor for timestep

reward
reward_scale: balance reward loss and original

loss
"""

unet.train()
unet.requires_grad_(True)
detector.train()
detector.requires_grad_(True)

Convert images to latent space
latents = vae.encode(x)

Sample timesteps for each image
timesteps = sample timesteps(num_train_timesteps,

max_ts, resample_ts)
Determine which samples need to calculate reward

loss
timestep_mask = (timesteps <= max_ts)

Add noise to the latents according to the noise
at each timestep

noisy_latents = scheduler.add noise(latents, noise
, timesteps)

Predict the noise residual and compute loss
noise_pred = unet(noisy_latents, timesteps,

encoder_hidden_states, l).sample

Predict the single-step denoised latents
sample_latents = scheduler.step(noise_pred,

timesteps, noisy_latents).pred original sample

Single-step reconstruct images according to the
predicted noise (Eq. 9)

reconstructed_images = vae.decode(sample_latents).
sample

Detect the reconstructed images and get dual
layouts with logits

A threshold is adopted to filter bboxes (Eq. 6)
dual_l, logits = detector(reconstructed_images)

Compute the layout translation loss (Eq. 7)
box_loss, cls_loss = calculate box loss(dual_l,

logits, l)
l_cycle_loss = box_loss + cls_loss

Original Latent Diffusion Loss (Eq. 2)
ldm_loss = ((noise_pred - noise) ** 2).mean()

total training loss for the generation model (Eq
. 10)

l_cycle_loss = l_cycle_loss * timestep_mask.sum()
/ timestep_mask.sum()

gen_loss = ldm_loss + l_cycle_loss * reward_scale

Compute the image translation loss (Eq. 11)
noise_pred_2 = unet(noisy_latents, timesteps,

encoder_hidden_states, dual_l).sample
i_cycle_loss = ((noise_pred - noise_pred_2) ** 2).

mean()

Compute the prediction loss (Eq. 12)
pred_l, logits = detector(x)
pred_box_loss, pred_cls_loss = calculate box loss(

pred_l, logits, l_ori)
pred_loss = pred_box_loss + pred_cls_loss

det_loss = pred_loss + i_cycle_loss * reward_scale

Optimize the generation model
optimizer_unet.zero_grad()
optimizer_detector.zero_grad()

gen_loss.backward(retain_graph=True)
det_loss.backward()

optimizer_unet.step()
optimizer_detector.step()

optimizer_unet.zero grad()
optimizer_detector.zero grad()

def sample timesteps(num_train_timesteps, max_ts,
resample_ts):

Initialize timestep
timesteps = torch.arange(0, num_train_timesteps)
probs = torch.ones(total_timesteps, device=’cuda’)

Reward re-weighting (Eq. 13)
reward_indices = (timesteps <= max_ts)
probs[reward_indices] *= resample_ts

Normalize probability distribution
probs = probs / probs.sum()

Sample according to the weights
sampled_timesteps = torch.multinomial(probs, bsz,

replacement=True)

return sampled_timesteps

Algorithm 2 Pseudo-code of using annotation-free syn-
thetic data in a PyTorch-like style.

"""
VisorGPT: generative model to sample layouts
Generator: layout-to image generative model
n: ratio of synthetic data to real data.
"""

syn_data_pairs = []
for sample in dataset:

Extract instance information
num_instances, class_names = extract instances(

sample)
Generate synthetic layouts using VisorGPT
based on given class names and instance

counts.
syn_layouts = VisorGPT.generate layouts(

class_names, num_instances, n)

Convert generated layouts into synthetic
images using a trained generator

syn_images = Generator.generate images(
syn_layouts)

for layout, image in zip(syn_layouts,
syn_images):

syn_data_pairs.append((layout, image))

E. Details Regarding Annotation-Free Synthetic Data
We adopt VisorGPT [18], a recent generative pre-training model to automatically sample layouts based on its learned visual
priors. It is worth noting that the VisorGPT used in our work is pre-trained only on COCO [13], without incorporating any
additional datasets that could introduce unfair comparisons. More specifically, VisorGPT requires users to input the object
names and the number of instances for each image to generate layouts. We sample synthesized layouts by inputting the class
names and the number of instances from each image in the COCO 2017 [13] training set into VisorGPT. Subsequently, the
synthetic layouts are fed into the generator G to obtain corresponding generated synthetic images. Please refer to Fig. S1
for examples. Leveraging synthesized layouts generated by a generative pre-training model and our high-fidelity generator,
we can automatically generate high-quality layout-image pairs without the need for manual annotation or real images. This
enables end-to-end training of GDCC and enhances the detector through data augmentation. Table 3 demonstrates that using
extra synthetic data boosts the performance of both generator and detector, highlighting the great potential of leveraging
synthetic data. The pseudo-code of generating annotation-free synthetic data is given in Algorithm 2.

Synthesized Layouts Corresponding

Generated images

Synthesized Layouts Corresponding

Generated images

Figure S1. Visual Examples of the Annotation-Free Synthetic Data. See Appendix §E for details.

F. More Qualitative Results of Generation with
GDCC

In Fig. S2-S5, we provide more qualitative generation re-
sults with GDCC after fine-tuning on pre-trained L2I meth-
ods (i.e., GeoDiffusion [4]) for few more epochs on the
COCO 2017 [13] and NuImages [3]. The same random
sampling seed is employed to guarantee fair comparisons.
As seen, GDCC enhances the generation performance of
L2I methods by improving the controllability of instance
quantities (i.e., Fig. S4 row 3), detailed instance textures
(i.e., Fig. S2 row 3), and superior realistic image fidelity
(i.e., Fig.S3 row 4).

G. More Qualitative Results of Detection with
GDCC

In Fig. S6-S8 illustrates that GDCC not only improves the
performance of L2I methods, but also enhances the capa-
bility of different pre-trained detection models, including
Faster R-CNN [17], YOLOX [6], and CO-DETR [20].

Layout Ground Truth GeoDiffusion GeoDiffusion - GDCC

Figure S2. More generation visual results on COCO 2017 [13]. GDCC is fine-tuned on pre-trained GeoDiffusion [4] for 2 epochs. To
guarantee fair comparisons, the same random sampling seed is employed. See Appendix §F for details.

Layout Ground Truth GeoDiffusion GeoDiffusion - GDCC

Figure S3. More generation visual results on COCO 2017 [13]. GDCC is fine-tuned on pre-trained GeoDiffusion [4] for 2 epochs. To
guarantee fair comparisons, the same random sampling seed is employed. See Appendix §F for details.

Layout Ground Truth GeoDiffusion GeoDiffusion - GDCC

Figure S4. More generation visual results on COCO 2017 [13]. GDCC is fine-tuned on pre-trained GeoDiffusion [4] for 2 epochs. To
guarantee fair comparisons, the same random sampling seed is employed. See Appendix §F for details.

Layout GeoDiffusion - GDCC Layout GeoDiffusion - GDCC

Figure S5. More generation visual results on NuImages [3]. GDCC is fine-tuned on pre-trained GeoDiffusion [4] for 3 epochs. See
Appendix §F for details.

Image Ground Truth Faster R-CNN Faster R-CNN - GDCC

Figure S6. More detection visual results of Faster R-CNN on COCO 2017 [13]. Faster R-CNN [17] is pre-trained on COCO training
set with 1x schedule, and GDCC is fine-tuned on it for 2 epochs. See Appendix §G for details.

YOLOX-S YOLOX-S - GDCC YOLOX-S YOLOX-S - GDCC

Figure S7. More detection visual results of YOLOX on COCO 2017 [13]. YOLOX-S [6] is pre-trained on COCO training set with 1x
schedule, and GDCC is fine-tuned on it for 2 epochs. See Appendix §G for details.

CO-DETR CO-DETR - GDCC CO-DETR CO-DETR - GDCC

Figure S8. More detection visual results of CO-DETR on COCO 2017 [13]. CO-DETR [20] is pre-trained on COCO training set with
1x schedule, and GDCC is fine-tuned on it for 2 epochs. See Appendix §G for details.

References
[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-

Yuan Mark Liao. Yolov4: Optimal speed and accuracy of
object detection. arXiv preprint arXiv:2004.10934, 2020. 2

[2] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-
stuff: Thing and stuff classes in context. In CVPR, pages
1209–1218, 2018. 2

[3] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan,
Giancarlo Baldan, and Oscar Beijbom. nuscenes: A mul-
timodal dataset for autonomous driving. In CVPR, pages
11621–11631, 2020. 2, 5, 9

[4] Kai Chen, Enze Xie, Zhe Chen, Yibo Wang, Lanqing Hong,
Zhenguo Li, and Dit-Yan Yeung. Geodiffusion: Text-
prompted geometric control for object detection data gen-
eration. In ICLR, 2023. 2, 5, 6, 7, 8, 9

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009. 2

[6] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian
Sun. Yolox: Exceeding yolo series in 2021. arXiv preprint
arXiv:2107.08430, 2021. 5, 11

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 2

[8] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, pages 2961–2969, 2017. 2

[9] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In NeurIPS, 2017. 1, 2

[10] Loshchilov Ilya and Hutter Frank. Decoupled weight decay
regularization. In ICLR, 2019. 2

[11] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image gener-
ation from scene graphs. In CVPR, pages 1219–1228, 2018.
2

[12] Zejian Li, Jingyu Wu, Immanuel Koh, Yongchuan Tang, and
Lingyun Sun. Image synthesis from layout with locality-
aware mask adaption. In ICCV, pages 13819–13828, 2021.
1, 2

[13] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740–755, 2014. 2, 4, 5, 6, 7, 8, 10, 11, 12

[14] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, pages 2117–2125,
2017. 2

[15] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo
numerical methods for diffusion models on manifolds. arXiv
preprint arXiv:2202.09778, 2022. 2

[16] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 2

[17] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In NeurIPS, 2015. 2, 5, 10

[18] Jinheng Xie, Kai Ye, Yudong Li, Yuexiang Li,
Kevin Qinghong Lin, Yefeng Zheng, Linlin Shen, and
Mike Zheng Shou. Learning visual prior via generative
pre-training. In NeurIPS, 2024. 4

[19] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
ICCV, pages 3836–3847, 2023. 2

[20] Zhuofan Zong, Guanglu Song, and Yu Liu. Detrs with
collaborative hybrid assignments training. In ICCV, pages
6748–6758, 2023. 5, 12

