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This supplementary material provides additional details
and insights into our proposed model namely DeepShield.
Specifically, we include the following components: detailed
model architecture, additional implementation details, and
additional experimental analysis. The pseudo-code for the
training procedures of DeepShield is illustrated in Algo-
rithm 1.

1. Detailed Model Architecture

In this work, we utilize CLIP’s pre-trained image encoder,
referred to as CLIP-ViT, as the video encoder for generaliz-
able deepfake video detection. To capture spatial manipula-
tions and temporal inconsistencies efficiently, we fine-tune
CLIP-ViT with the parameter-efficient ST-Adapter [2], as
depicted in Figure 1. The ST-Adapter is inserted before the
Multi-Head Self-Attention and Feed-Forward Network in
each Transformer block of CLIP-ViT.

Let X ∈ RT×P×d denote the input patch embeddings,
where T is the number of frames per video clip, P is the
number of patch tokens, and d is the embedding dimension.
The ST-Adapter can be defined as follows,

ST-Adapter(X) = X+ g(DWConv3D(XWdown))Wup,
(1)

where Wdown and Wup are learnable parameter weights of
the down- and up-projection linear layers, respectively, and
g(·) is an activation function. As well, DWConv3D(·) is a
depth-wise 3D convolution layer with kernel size T ×H ×
W = 3× 1× 1, which effectively captures temporal infor-
mation.
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Algorithm 1 Pseudo-code for Training Process

Input: Training set of real and fake videos, Training
epochs Total Epoch, Iterations per epoch Total Iter,
Initialized model ψ with backbone E and classifier ϕ

Output: Optimized model parameters ψ
1: for epoch = 1 to Total Epoch do
2: for iter = 1 to Total Iter do
3: Randomly select a mini-batch B from the training

set
4: Initialize Breal ← ∅, Bfake ← ∅, Bblend ← ∅
5: for each video V in mini-batch B do
6: if V is real then
7: Apply SAM to blend video: Vblend ←

SAM(V)
8: Breal ← Breal ∪ {V}
9: Bblend ← Bblend ∪ {Vblend}

10: Bfake ← Bfake ∪ {Vblend}
11: else
12: Randomly select a real video Vreal from the

training set
13: Bfake ← Bfake ∪ {V}
14: Breal ← Breal ∪ {Vreal}
15: end if
16: end for
17: Apply DFA on fake videos: BDFA ← DFA(Bfake)
18: Bfake ← Bfake ∪ BDFA

19: B ← B ∪ BDFA

20: Loverall ← LLPG(Breal ∪ Bblend) + LGFD(B)
21: Optimize ψ using Loverall

22: end for
23: end for
24: return Optimized model ψ
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Method Architecture Input Type Testing Set AUC (%)

FF++ CDF DFDCP DFDC DFD

CLIP-ViT (vanilla) ViT-B/16 Frame 55.2 60.0 59.0 55.2 57.4
CLIP-ViT (adapted) ViT-B/16+ST-Adapter Video 98.2 85.4 88.9 78.4 95.3
DeepShield (Ours) ViT-B/16+ST-Adapter Video 99.2 92.2 93.2 82.8 96.1

Table 1. Comparison results (video-level AUC, %) between DeepShield and its two variants on cross-dataset evaluation. The comparison
methods include both frame-based and video-based approaches, employing various model architectures.
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Figure 1. Detailed architecture of the transformer block in the
CLIP image encoder, with two ST-Adapters integrated. Each ST-
Adapter incorporates a depth-wise 3D convolution layer to effec-
tively capture temporal information.

Method FaceDancer (WACV23) MCNet (ICCV23) Avg.

TALL [4] 86.0 53.3 69.7
DeepShield (Ours) 98.1 95.3 96.7

Table 2. Comparison results of our proposed DeepShield and
TALL [4] on the DF40 subset [5] using video-level AUC (%) as
metric.

2. Additional Implementation Details

Each training batch consists of 16 samples: four real
videos, four fake videos (either sampled from the train-
ing set or generated using Spatiotemporal Artifact Mod-
eling), and eight additional video features derived from
these fake videos through Domain Feature Augmenta-
tion (including Domain-Bridging Feature Generation and
Boundary-Expanding Feature Generation). During train-
ing, four clips of 12 consecutive frames are randomly sam-
pled from each video. For inference, each video is divided
into four segments. From each segment, the first 12 frames
are extracted to form four clips, and the final prediction is
computed by averaging the prediction probabilities of these
clips.

3. Additional Experimental Analysis

Exploration towards Model Variants In this work, we
build two variants of our proposed DeepShield to evaluate
its effect on deepfake video detection: CLIP-ViT (vanilla),
which directly employs the pre-trained CLIP image encoder
without fine-tuning for the deepfake video detection task,
and CLIP-ViT (adapted), where the original CLIP-ViT
model is equipped with the ST-Adapter and fine-tuned via
binary real-fake supervision for parameter-efficient adapta-
tion to deepfake video detection. As illustrated by Table 1
and Table 1 (of manuscript), our baselines do not demon-
strate a significant advantage over existing state-of-the-art
(SOTA) methods, ensuring a fair comparison between our
full model and others. In the meanwhile, our full model
DeepShield consistently outperforms the baseline variants
across all cases in cross-dataset evaluations and even sur-
passes all current SOTA algorithms. This demonstrates the
effectiveness of our proposed strategy in significantly im-
proving the model’s overall performance in detecting forged
samples.

More Results on Up-to-date Deepdake Evaluation
Dataset To better evaluate DeepShield’s generalization
capability across different types of forgeries, we conducted
tests on a subset of the DF40 dataset [5]. This subset in-
cludes FaceDancer [3] (with face-swapping deepfakes gen-
erated by neural networks) and MCNet [1] (talking-head
generation). As shown in Table 2, DeepShield outperforms
TALL [4] on these more complex forgeries, demonstrating
its strong adaptability even beyond blending-based manip-
ulations.

Necessity of Temporal Artifact Generating (TAG) In
our study, we propose Temporal Artifact Generating (TAG)
in the SAM component, which applies Spatial Artifact Gen-
erating (SAG) frame-by-frame to simulate temporal incon-
sistencies in video frames. This strategy maintains the aug-
mentation consistency on source or target frames and uni-
formity in blending mask adjustments across T frames. As
shown in Table 3, removing TAG reduces the average deep-
fake detection performance by 2.5%, which suggests that
using spatial artifact generation alone is insufficient for opti-
mizing DeepShield’s deepfake video detection capabilities.
The strong detection performance on both cross-dataset and



Variant CDF DFDCP DFDC DFD Avg.

DeepShield (Ours) 92.2 93.2 82.8 96.1 91.1
DeepShield w/o TAG 89.7 90.0 78.5 96.0 88.6

Table 3. Ablation study results (video-level AUC, %) of
DeepShield on TAG, showing the impact of removing itself. These
experiments conduct model training on FF++ (HQ) and perform
cross-dataset evaluations on CFD, DFDC, DFDCP, and DFD.

cross-manipulation cases also confirms that our SAM ap-
proach does not cause overfitting, thus maintaining detec-
tion efficacy in deepfake video analysis.

Hyper-Parameter Sensitivity to the Threshold θ We
conduct ablation studies to analyze the impact of the thresh-
old θ in the Patch Scoring Function on cross-dataset perfor-
mance. As shown in Table 4, the threshold plays a critical
role in balancing sensitivity and robustness in scoring patch
regions. Lower thresholds (e.g., θ = 10) result in more
consistent performance across datasets, achieving the best
average score of 92.7. However, when the threshold be-
comes too high (e.g., θ = 150), the performance slightly
declines as critical low-scoring patches may be overlooked.
These results demonstrate the importance of carefully tun-
ing θ to optimize the balance between precision and cover-
age in patch scoring.

Threshold (θ) CDF DFDCP Avg.

10 92.2 93.2 92.7
20 92.3 92.8 92.5
50 92.6 92.6 92.6
100 91.9 93.0 92.4
150 92.2 92.3 92.2

Table 4. Impact of the threshold θ in Patch Scoring Function on
cross-dataset performance, using video-level AUC(%) as the met-
ric. The best results are highlighted in bold.

Ablation for Weights in the Losses We conduct ablation
studies on the balancing weights ω and υ in the loss func-
tion. As shown in Table 5, the weights significantly influ-
ence performance. When ω = 0.5 and υ = 0.5, the model
achieves the best average performance of 89.4, indicating a
balanced optimization. Increasing ω or υ can improve spe-
cific dataset scores, such as DFDC (83.1 at υ = 1), but
may reduce generalization. These results highlight the im-
portance of tuning weights for optimal trade-offs between
dataset-specific and overall performance.
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