ng NAVER: A Neuro-Symbolic Compositional Automaton for Visual Grounding
with Explicit Logic Reasoning

Supplementary Material

This supplementary material provides additional details
about the proposed method NAVER. In particular, it pro-
vides details about the additional quantitative comparison
result with both accuracy and IoU in section 6, the com-
plexity analysis in section 7, the ablation studies for VLM
in section 8, the analysis of self-correction mechanisms in
section 9, the performance analysis for query length in sec-
tion 10, the ablation studies for captioner in section 11, and
the prompts used for the LLMs and VLMs in section 12.

6. Additional Quantitative Comparison

In this section, we report both the accuracy and Intersection
over Union (IoU) performance for the referring expression
detection task. Table 9 presents a quantitative comparison
on the RefCOCO, RefCOCO+, RefCOCOg [21], and Ref-
Adv [1] datasets. Additionally, we include results for the
compositional methods using GroundingDINO as the VFM,
marked with £. We observed that for each configuration, our
proposed method NAVER outperforms the other composi-
tional methods using the same foundation models and also
outperform the grounding methods themselves. These re-
sults further validate that our approach consistently achieves
superior IoU performance over existing baselines.

7. Complexity Analysis

Efficiency results for NAVER and compositional baselines
are provided in Table 10, which includes average runtime,
token usage, and cost per sample. For a fair comparison,
we use the same foundation models and LLM for the ex-
periments. From the results, we observe NAVER is more
efficient than HYDRA [22] with higher performance and
lower runtime failure rate. Although ViperGPT [45] has
lower time complexity, this advantage is offset by reduced
performance due to its lack of validation. These results
demonstrate that NAVER’s flexible automaton design re-
duces unnecessary computations by dynamically adapting
the pipeline.

8. Ablation Studies for VLMs

We evaluate the impact of four different Vision-Language
Models (VLMs) [10, 26, 30, 54] on the performance of
NAVER. The results are shown in Table 11. All tested mod-
els achieve comparable results on both RefCOCO and Re-
fCOCO+. Among the four VLMs, InternVL2-8B achieves
slightly better performance with accuracy scores of 96.2 on

RefCOCO and 92.8 on RefCOCO+. However, the differ-
ences between the VLMs are marginal, indicating that the
architecture of NAVER is insensitive to the choice of VLM.
This shows NAVER’s ability to decompose complex tasks
into simpler subtasks, reducing the reliance on the capabil-
ities of the VLMs. Given the similar performance across
all tested VLMs, we select InternVL2-8B for its availability
and accessibility, ensuring simpler implementation without
compromising performance. This demonstrates the flexibil-
ity of NAVER in adopting different VLMs while delivering
state-of-the-art performance.

9. Self-Correction Analysis

We analyze the performance of the self-correction mecha-
nism in NAVER, focusing on its ability to address errors
during inference. In this mechanism, each time the system
transitions into the self-correction state (indicated by a red
arrow in Figure 2), it is counted as one retry. Our experi-
ments, conducted on the RefCOCO test A dataset, show that
approximately 10% of the samples require self-correction.
To better understand the behavior of the mechanism, we cal-
culate the proportion of samples resolved after each number
of retries within the subset of data requiring self-correction.
These results are visualized as a bar chart in Figure 3. The
analysis shows that a single retry resolves 68% of the er-
rors, and 96% of the errors are resolved within six retries.
To prevent infinite looping, we limit the maximum number
of retries to six, as this threshold effectively addresses the
majority of the errors.

10. Query Length Analysis

We analyze the impact of text query length on perfor-
mance, comparing NAVER with baselines across different
query lengths. The results, shown in Figure 4, indicate that
NAVER consistently reaches SoTA performance compared
to all baselines regardless of query length. While most base-
line methods experience a performance decline as query
length increases, the extent of decrease varies. Notably,
older models like GLIP [27] show a significant performance
drop for longer queries, suggesting difficulties in handling
complex text inputs. In contrast, NAVER maintains stable
performance, showing its robustness in processing longer
and more complex queries.



RefCOCO | RefCOCO+ | RefCOCOg Ref-Adv
Method Acc. IoU | Ace. IoU | Ace. IoU | Ace. IoU
GLIP-L [27] 55.0 54.1 | 51.1 513 | 546 548 | 557 552

KOSMOS-2 [39] 57.4 - 50.7 - 61.7 - - -
YOLO-World-X [11] 12,1 127 | 121 127 | 329 33.8 | 322 342
YOLO-World-V2-X [11] | 19.8 20.0 | 16.8 17.2 | 36.5 373 | 33.1 348
E GroundingDINO-T [32] 61.6 60.2 | 59.7 589 | 60.6 59.7 | 60.5 59.8
GroundingDINO-B [32] | 90.8 852 | 84.6 77.5 | 80.3 694 | 780 73.1
SimVG [13] 949 869 | 91.0 839 | 8.9 813 | 744 70.7
Florence2-B [53] 945 89.5| 912 865 | 883 850 | 722 719
Florence2-L [53] 95.1 90.6 | 92.5 882 | 909 87.6 | 71.8 71.8

Code-bison [44] 44.4 - 38.2 - - - - -
ViperGPT [45] 62.6 594 | 623 587 | 67.2 63.6 | 60.7 58.6
= HYDRAT [22] 60.9 582 | 565 549 | 629 60.8 | 544 535
£ | NAVERY 70.1 679 | 641 638 | 69.5 59.2 | 651 634
95 ViperGPT# 67.1 64.0 | 732 688 | 65.6 63.5 | 60.1 59.5
2 | HYDRAZ 63.5 613|629 609 | 59.8 584 | 532 535
% NAVER 91.7 833 | 824 784 | 759 725 | 873 74.2
o ViperGPT* 68.6 66.5 | 73.8 704 | 68.7 66.8 | 582 58.3
HYDRA* 657 64.6 | 662 653 | 599 60.5 | 483 51.8
NAVER* 96.2 91.7 | 928 884 | 91.6 88.1 | 754 753

Table 9. Accuracy and IoU performance on the referring expression detection task. Results are shown on the RefCOCO, RefCOCO+,
RefCOCOg [21], and Ref-Adv [1] datasets. In compositional methods, they are grouped with the same VLMs for fair comparison. The
methods with same symbols (f, %, *) use the same VFMs. The VFMs used are: (1) uses GLIP-L and BLIP; (%) uses GroundingDINO-B
and InternVL2; (*) uses Florence2-L and InternVL2, respectively. All groups use GPT-40 Mini.

Distributions of Self-Correction Times

e
N
)

0.68

o
)
|

Proportion
o o o
w B w

o ©
SN
1 !

091 0.93 0.96 0.97 0.99

0.96 0.99 1.00

1 2 3 4 5 6 7 8 9 10 11
Self-Correction Times

o
o

Figure 3. Distribution of self-correction times in NAVER. The x-axis represents the number of retries for self-correction, while the
y-axis shows the proportion of samples requiring self-correction within each group of self-correction times. The annotated values indicate
the cumulative proportion of samples resolved by that number of retries.

Time #LLM Tokens LLM Cost VLM \ RefCOCO RefCOCO+
Method (Seconds) Input Output (USD) BLIP2-XXL [26] 954 917
ViperGPT [45] | 202 4169 29 0.00064 xGen-MM [54] 045 87.9
HYDRA [22] 1493 19701 618 0.00332 5 ' '
NAVER (Ours) | 596 2083 39 0.00034 LLaVAL5-7B [30] 953 o1.9
InternVL2-8B [10] 96.2 92.8

Table 10. Complexity comparison between compositional
methods. All results are evaluated on the RefCOCOg test set with
the GPT-40 Mini for fair comparison. All values are the average
per data sample. All methods use the same foundation models.

Table 11. Comparison of VLM selection for NAVER. All results
(accuracy) are evaluated on the RefCOCO and RefCOCO+ testA
datasets [21].



Accuracy on Different Lengths of Text Query on RefCOCO

1.0 ~
_
- . °
0.8 A °
3
o 0.6 | —
< —e— NAVER —
HYDRA
0.4 —e— Florence \ /c
—e— GroundingDino ©
0.24 —e— GLIP

®
0-3 4-7 8-11 12-15 13+
Length of Text Query

Figure 4. Accuracy performance of different text query length in NAVER. The x-axis represents the length of text query, while the
y-axis shows the accuracy of NAVER and baselines within each group of query length.

Captioner ECE \ RefCOCO RefCOCO+ RefCOCOg RefAdv

X VLM 91.6 87.5 80.2 65.6
VLM LLM 96.2 92.8 91.6 75.4

Table 12. Ablations for the captioner and type of entity category extractor (ECE). All results are accuracy for referring expression
detection task.

11. Ablations for Captioner which serves as input for the entity extractor LLM in sub-
sequent processing.

e Prompt 12.2: This prompt is utilized in the Perception
state to guide the LLM in identifying entity categories C
relevant to the query (Q and the caption I.. The output is
a list of entity categories, which forms the basis for visual
reasoning in the subsequent states.

e Prompt 12.3: This prompt guides the logic query genera-
tor LLM to convert the textual query @) into a ProbLog
logic query in the Logic Generation state. The output
logic query is then utilized in the ProbLog interpreter to
perform probabilistic logic reasoning.

e Prompt 12.4: This prompt guides the relation recognizer
VLM to identify relations R between entities I in the
Logic Generation state. These recognized relations are
used to construct logic expressions, as the foundation for
probabilistic logic reasoning.

In the perception state, NAVER first converts the image into
a rich caption and then lets an LLM-based entity-category
extractor (ECE) decide which object classes are relevant to
the query. An intuitive alternative is to skip captioning and
ask the VLM to predict categories directly. Table 12 shows
that this seemingly simpler choice causes a consistent ac-
curacy drop of 4.6% on RefCOCO, 5.3% on RefCOCO+,
11.4% on RefCOCOg, and 9.8% on Ref-Adv. The larger
gap on the more complex datasets (RefCOCOg, Ref-Adv)
suggests that a textual scene summary helps the downstream
logic generator reason about complex descriptions. The
clear improvement brought by the Captioner justifies keep-
ing it in the final system.

12. LLM and VLM Prompts

NAVER employs LLMs and VLMs in five different roles as e Prompt 12.5: This prompt is used in the Answering state
to guide the answerer VLM in validating whether the

identified target Y7, satisfies the conditions of the query
Q. Tt requests a binary response (“Yes” or “No”) to con-
firm whether the top-ranked candidate from the Logic
Reasoning state fulfills all query requirements, ensuring
only valid results are returned as final outputs.

described in section 3: as a caption generator VLM in the
Perception state, an entity extractor LLM in the Perception
state, a logic query generator LLM in the Logic Generation
state, a relation recognizer VLM in the Logic Generation
state, and an answerer in the Answering state. The prompts
utilized for each role are carefully crafted to generate pre-
cise outputs aligned with the requirements of each state,
ensuring accurate visual grounding and robust reasoning.
Prompts 12.1 to 12.5 show the detailed prompt templates
for each role.

* Prompt 12.1: This prompt instructs the VLM to generate Prompt 12.1: Captioner VLM

descriptive captions I, for the input image . The gener-
ated captions represent the visual content in textual form,

(image)Please describe the image in detail.




Prompt 12.2: Entity Extractor LLM

You’re an Al assistant designed to find detailed information from
image.

You need to find important objects based on the given query
which is the object you need to find. The query normally is a set of
words which includes a object name and the attributes of the object.

Here are some examples:
Query: (example query 1)
Answer: (example answer 1)

Query: (example query 2)
Answer: (example answer 2)

Your output must be a JSON object contains the flatten list of string.

non non non

For example: "output": ["apple", "orange", "chair", "umbrella"]

Caption: (caption)
Query: (query)
Answer:

. J

Prompt 12.3: Logic Query Generator LLM

You’re an Al assistant designed to generate the ProbLog code (a logic
programming language similar to Prolog).

You need to generate a new rule "target" that will be used to query the
target objects in the image based on given text prompt.

The names of entity categories are (entity categories).

The output is the code. For example:

** " problog

target(ID) :- entity(ID, "<some category>", _, _,
_), attribute(ID, _).

_), relation(ID, _,

—

More examples:

find the target "(example query 1)"
** " problog

(example ProbLog code 1)

NN

find the target "(example query 2)"
* * problog
(example ProbLog code 2)

Complete the following ProbLog code:
** " problog
(ProbLog code of context)

Your output should be the ProbLog code.
find the target "(query)"
Your answer:

€ J

Prompt 12.4: Relation Recognizer VLM

(image) You're an Al assistant designed to find the relations of objects
in the given image.

The interested objects are highlighted by bounding boxes (X1, Y1,
X2, Y2). They are:

A: the (category of A)labeled by red bounding box (bbox of A).
B: the (category of B)labeled by red bounding box (bbox of B).

Only consider the camera view. Note you are focusing to analyze the
relation A to B, do not consider the relation B to A. Please answer
"Yes" or "No" for the following question.

Is A {relation) B?

Your answer is:

\ J

Prompt 12.5: Answerer VLM

(image) You're an image analyst designed to check if the highlighted
object in the image meets the query description.

The query is: "(query)"

Please check the highlighted object "A" in the image and answer the
question: Does the highlighted object meet the query description?
Your answer should be "Yes" or "No".

Your answer:

\ J




	Additional Quantitative Comparison
	Complexity Analysis
	Ablation Studies for VLMs
	Self-Correction Analysis
	Query Length Analysis
	Ablations for Captioner
	LLM and VLM Prompts

