
Parametric Shadow Control for Portrait Generation
in Text-to-Image Diffusion Models

Supplementary Material

A. Overview
In this Appendix, we present:
• Section B: Network architectures.
• Section C: Implementation details.
• Section D: Additional Results.
• Section E: Evaluation Details.
• Section F: Detailed Text Prompt.
• Section G: Additional Discussion.

B. Network Architectures
In Fig.11, we present the detailed network architecture of
our three key components: the intermediate feature extrac-
tion process, the shadow-depth estimator, and the identity
estimator. While shadow-depth estimator and the identity
estimator are trained separately, they work in conjunction
during the inference phase’s latent optimization process.

Our design draws inspiration from Readout[30] and Dif-
fusion Hyperfeatures[29]. While these works demonstrated
that latent optimization through a compact network can ef-
fectively control attributes like human pose and placement,
we demonstrate that this control philosophy can be effec-
tively extended to manipulate intrinsic properties like shad-
ows.

B.1. Detail of Intermediate Feature Fetch
The leftmost panel of Fig.11 illustrates our feature extrac-
tion process from UNet. We fetch intermediate features at
multiple scales in the UNet to capture rich shadow-related
information embedded in the model.

B.2. Detailed Architecture of SD Estimator
The middle and right panels in Fig.11 show our shadow-
depth estimator architecture. It begins with feature fu-
sion through a series of convolutional layers, followed by
weighted sum aggregation. The output layers use multiple
convolutions to predict shadow and depth maps.

B.3. Detailed Architecture of ID Estimator
The rightmost panel in Fig.11 depicts our identity estimator,
which shares a similar convolutional structure but is specif-
ically designed to extract and maintain identity-related fea-
tures. Though trained separately from the shadow-depth es-
timator, it processes the same input features. Unlike the
shadow-depth estimator that outputs explicit attribute maps,
this network directly produces an identity feature map that
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Figure 11. Details of network architecture. Both shadow-depth
estimator and identity estimator are trained separately but work
jointly during inference-time optimization. The pipeline consists
of three main steps: (1) Intermediate Features Fetch: extracts
multi-scale features from Latent Denoising UNet timesteps as
shared input. (2) Feature Fusion: processes features through con-
volutional layers with weighted sum aggregation. (3) Attributes
Output : For Shadow & Depth Output Layers, it generates explicit
shadow and depth maps through convolutional layers. For Identity
Output Layers, it uses same feature processing structure but out-
puts identity feature map directly for loss computation.

Figure 12. Customized shadow acquisition using ray casting. The
user specifies the 3D position of the light source, and the shadow is
generated based on a depth map estimated by the Shadow Director
during inference.

guides portrait characteristic preservation during optimiza-
tion.

C. Implementation Details
C.1. Shadow Acquisition Details
For the ray-casting option, we use the shadow generation
algorithm from [19]. This algorithm takes a depth map and
a user-defined lighting position in 3D space as inputs. In
brief, a shadow ray is cast toward the light source for each
point on the estimated depth map (Figure 12). This depth
map is generated by the Shadow Director during inference.
If the ray intersects another part of the 3D structure, the



Negative Sample Positive Sample Positive Sample
Push Pull

Identity A Lighting X Identity B Lighting 1 Identity B Lighting 2

Latent Space ID Estimator

Figure 13. Training and Mechanism of the Identity Estimator.
The Identity Estimator ensures identity consistency during shadow
manipulation. In the training phase, we use three images: two with
the same identity but different lighting conditions, and a third with
a random identity. Identity feature maps (represented by colored
spheres) are independently extracted for each image, following a
similar process to the Shadow-Depth Estimator. The triplet loss
minimizes the distance between features of the same identity (pos-
itive samples) and maximizes the distance from features of differ-
ent identities (negative samples), enabling the Identity Estimator
to effectively distinguish identities. During latent optimization in
the inference phase, a reference feature is first generated from a
text prompt to guide subsequent shadow manipulations for that
prompt.

point is marked as shadowed. This method ensures that
shadows align accurately with the 3D geometry.

C.2. Training Phase Details
Our framework is built on the stable-diffusion-xl-base-1.0
model. In training phase, the maximum time step is 1000.
In each training iteration, we randomly add noise to clean
latent features through the scheduler. Shadow-depth esti-
mator and identity estimator are trained separately but share
identical training settings: learning rate of 1 → 10→3, zero
weight decay. For the shadow-depth estimator, we use L1
loss to supervise both depth and shadow map predictions
against their ground truth (synthetic dataset). And the batch
size is 8. For the identity estimator, we employ a hinge loss
with 0.5 margin to ensure positive samples remain close in
feature space. Moreover, the batch size is 3. 2 positive sam-
ples and 1 negative sample. Figure 13 straightforwardly il-
lustrates the training mechanism of ID-Estimator.

C.3. Inference Phase Details
Our shadow manipulation pipeline provides three user con-
trol parameters: input type (either binar y mask or 3D light
position), and shadow strength (ranging from 0 to 1). A
shadow strength of 0 maintains current shadows, while 1
triggers maximum manipulation with 30 optimization iter-
ations. To reduce shadow strength, users can add light to
desired regions using 3D light positioning.

The manipulation process involves one generation round
with 100 time steps. Shadow manipulation occurs specif-
ically at time step 40. At this step, we first generate the

depth map and create a customized shadow map based on
user’s setting. We then optimize the unconditional branch
latent features using Adam optimizer with learning rate 5e-
2. The number of optimization iterations is determined by
the user-specified shadow strength (strength ! 30). During
optimization, we combine identity and shadow losses with
weights of 3 and 1 respectively. The CFG scale is set to 6
throughout the process.

Figure 14. Example of the user study.

D. Additional Experimental Results
D.1. Handle Occlusions
Yes. While no occluded examples appear in our training
set, our method handles occlusions without retraining. In
Fig.15, our results cast reasonable shadows for hair, hats,
and glasses. Supp file includes 10+ cases (Fig. 15-20) with
pre-existing shadow. Moreover, when a user requests an ex-
ternal shadow via text prompt, our pipeline faithfully pre-
serves it. This zero-shot ability arises from the diffusion
model’s implicit geometric priors to make generated image
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Figure 15. Occlusion handling without retraining. L: left-relit, R:
right-relit.
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Figure 16. Shadow control on generated object without retraining.
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Figure 17. Background flip in latent space harmonizes the scene
lighting with our left-relit portraits. After performing latent opti-
mization on the foreground, we apply a simple flip to the back-
ground using the portrait mask. This realigns the sunset (green ar-
row) to match the new facial shading, demonstrating our pipeline’s
ease of background-aware harmonization.

visually plausible.

D.2. Generalize to Object Relighting
Yes. Without any retraining, our portrait relighting method
can control shadows on simple geometric objects (Fig.16),
demonstrating generalization potential beyond faces. How-
ever, complex materials and geometry remain challenging,
as our estimators has not been specialized trained on ob-
jects. Fine-tuning on a small object-centric dataset should
extend our method to broader range of object efficiently.

D.3. Decoupling Foreground and Background Re-
lighting

Shadow Director aims to focus on foreground portrait re-
lit, resulting in foreground and background solation. Iso-
lating foreground subject shadow from the background al-
lows users to generate stylized lighting effect not restricted
by the background. We empower users to generate physi-
cally implausible editing for artistic expression if they wish,
while still providing the option to adjust lighting in a phys-
ically plausible manner. This decoupled design gives users
more freedom for control in generation and aligns with
prior directional-light editing methods. Meanwhile, our
method leaves room for background-aware optimization:
just adding a background estimator to harmonize the scene
without altering our core pipeline. Fig.17 shows how easily

a background tweak fits into our pipeline, even without a
dedicated estimator. After we finish the latent optimization
(left-relit), we apply a flip on the background (via portrait-
mask) in the latent space. This flip realigns the sunset with
the new facial lighting. This demonstrates that finer, scene-
wide harmonization is feasible within our pipeline design.

D.4. Controlling Directional Light Position
We provide additional results about Shadow Synthesis via
Lighting Position Control in Figures 23, Figures 24, Figures
25, Figures 26, Figures 27, Figures 28.

E. Evaluation Details
E.1. Baseline Implementation Details
In Hou [19] method, one may find there is distortion around
face. We found that paper, like DiFaReLi, when they reim-
plement Hou’s method. Also has similar distortion. There-
fore, it comfirm our implemention correctness. For Di-
FaReli, after installation, we test author’s demo to obtain vi-
sually exact same result. However, we found that DiFaReli
cannot push the shadow strength be harder. The range of
enable shadow strength is relatively limited, indicating this
is a challenging task. Meanwhile, we find that the all those
required element as needed input for DiFaReli looks rea-
sonable, comfirming our re-implementation is correct. In
specific, to do relighting with DiFaReli, there should be a
source img to provide refernece shadow. We found that this
target shadow is correctly transfer to the relit image’s re-
lated input, as we shown in the main paper experiment fig-
ure. Notably, we use very simple portrait and official demo
portrait image as target shadow. However, the DiFaReLi
still fails on generated image, indicating this taks is a chal-
lenge one.

E.2. User Study
We conduct a user study as shown in Figure 14. We ask the
users to choose the outputs based on specific criteria: con-
tent preservation and text reflection. We show 20 samples
and the outputs of four models: ours. IC-Light. Switch-
Light, Hou, and DiFaReLi. The image used in the user
study can be seen in Figures 23, Figures 24, Figures 25,
Figures 26, Figures 27, Figures 28

F. Text Prompt Templates and Examples
To ensure controlled portrait generation while maintain-
ing consistency in identity and lighting, we designed struc-
tured text prompts tailored for our diffusion model. These
prompts balance diversity in artistic styles while minimiz-
ing interference from excessive accessories, complex cloth-
ing, or elaborate backgrounds, which could affect shadow
manipulation.



F.1. Prompt Template
Our prompts follow a structured format to enforce consis-
tency in composition and lighting conditions. The template
is as follows:

A [STYLE] close-up portrait of a [AGE] [GENDER]
with [ETHNICITY] and [FACE SHAPE] features. Wearing
[SIMPLE CLOTHING].

Where:
• STYLE: Specifies the artistic style (e.g., oil painting, cin-

ematic, gothic, fantasy).
• AGE: Defines the subject’s age category (e.g., young,

middle-aged, elderly).
• GENDER: Indicates gender identity (e.g., man, woman).
• ETHNICITY: Ensures diversity in generated subjects

(e.g., Asian, African, Nordic, Mediterranean).
• FACE SHAPE: Controls facial structure (e.g., angular,

round, chiseled).
• SIMPLE CLOTHING: Limits clothing complexity

(e.g., dark tunic, plain robe, leather vest) to preserve iden-
tity consistency.

• BACKGROUND.

F.2. Example Prompts
To illustrate the variety of generated portraits, we provide a
few example prompts:
• A gothic close-up portrait of a young man with Nordic

and chiseled features. Wearing a dark tunic. A blurred
studio background.

• A cinematic close-up portrait of an elderly woman with
African and angular features. Wearing a simple robe. A
blurred studio background.

• A fantasy close-up portrait of a middle-aged warrior with
Eastern European and strong features. Wearing a leather
vest. A blurred studio background.

• A Renaissance-inspired close-up portrait of a young
queen with Mediterranean and delicate features. Wear-
ing an embroidered cloak. A blurred studio background.
These structured prompts allow controlled generation

of diverse portraits while ensuring identity preservation,
shadow consistency, and style variety.

G. Additional Discussion
G.1. Why can Identity and Shadow be Decoupled?
Decoupling shadow and identity is well-established by prior
work on style and lighting transfer: StyleAligned [16]
shows that swapping style elements (lighting and texture)
between generated images preserves identity, and LumiNet
[54] shows a diffusion model can separate lighting from
scene. Meanwhile, our ID Estimator is trained to be
illumination-invariant, focusing solely on identity and ig-
noring shadow variations. These prior findings and our

illumination-invariant design explain why we can adjust
lighting without significantly affecting identity.

G.2. Extend to Environment maps?
While our design did not originally target environment-map
relighting, our lightweight modular architecture makes it
plausible. One can replace ray casting with a neural shadow
synthesis module, which takes an environment map along
with outputs from new normals and shading estimators to
produce shadow map. Then, joint optimize them with ID
estimator with rendering constraints. Since this extension
would fit within our pipeline, we can preserve our method’s
strengths.
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Figure 18. Comparison of portrait relighting across different editing methods on diverse artistic styles. Each row corresponds to a different
method, while each column maintains left and right lighting direction for convenient visual comparison.
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Figure 19. Comparison of portrait relighting across different editing methods on diverse artistic styles. Each row corresponds to a different
method, while each column maintains left and right lighting direction for convenient visual comparison.
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Figure 20. Comparison of portrait relighting across different editing methods on diverse artistic styles. Each row corresponds to a different
method, while each column maintains left and right lighting direction for convenient visual comparison.
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Figure 21. Comparison of portrait relighting across different editing methods on diverse artistic styles. Each row corresponds to a different
method, while each column maintains left and right lighting direction for convenient visual comparison.
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Figure 22. Comparison of portrait relighting across different editing methods on diverse artistic styles. Each row corresponds to a different
method, while each column maintains left and right lighting direction for convenient visual comparison.
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Figure 23. Comparison of portrait relighting across different editing methods on diverse artistic styles. Each row corresponds to a different
method, while each column maintains left and right lighting direction for convenient visual comparison.



IC Light

Left Light Right LightTop Light

SwitchLight

Light 1 Light 2

Ours

Figure 24. Shadow Synthesis under more lighting conditions. SwitchLight here doesn’t use directional light.
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Figure 25. Shadow Synthesis under more lighting conditions. SwitchLight here doesn’t use directional light.
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Figure 26. Shadow Synthesis under more lighting conditions. SwitchLight here doesn’t use directional light.For IC-Light here, ”Hulk”
text prompt is feed into as another condition to help IC-Light maintain the identity
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Figure 27. Shadow Synthesis under more lighting conditions. SwitchLight here doesn’t use directional light.
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Figure 28. Shadow Synthesis under more lighting conditions. SwitchLight here doesn’t use directional light


