
Gain-MLP: Improving HDR Gain Map Encoding via a Lightweight MLP

Supplementary Material

This supplementary material provides (1) ablation ex-
periments to characterize the performance of our proposed
method and related works in terms of reconstruction qual-
ity; (2) additional figures demonstrating the different tone
mapping methods employed in the dataset; (3) an expanded
results table demonstrating method performance on individ-
ual tone mapping strategies.

1. Ablations

In addition to network size, which is examined in the main
text, MLP performance is dependent on optimization time.
In Fig. 1, we test the MLP methods addressed in the main
paper on the manually tone mapped images of Cyriac et
al. [2] at different optimization times. In these experi-
ments, network size is matched to the default settings of the
embedded ITM baseline, MLP-ITM, since its performance
sharply decreases outside of this setting. The results show
that this network is roughly as computationally efficient
as the proposed Gamma-MLP. When compared to Direct-
MLP [13], Gain-MLP has higher performance at low op-
timization times but Direct-MLP sees consistent improve-
ments with increased optimization time.
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Figure 1. MLP performance as a function of optimization time on
the manually tone-mapped data from the Cyriac et al. dataset [2].
All networks were set to match the metadata size of MLP-ITM in
its default setting [14]. Gain-MLP has higher performance than
Direct-MLP at low optimization times, but Direct-MLP improves
across tested optimization times. Similarly, MLP-ITM has best
performance at low optimization times but Gamma-MLP has an
extended lattitude for improvement.

Next, we compare Gain-MLP performance with and
without the SDR base image as input. As mentioned
in the main paper, applying MLPs directly for compres-
sion [4, 5, 16] can still be computationally expensive to opti-
mize, as this approach relies only on positional coordinates
(x, y) to predict image values (r, g, b). Our application has
a significant advantage, given our access to the SDR image
to guide the reconstruction of the gain map. Table 1 shows

Model Inputs PSNR ↑ SSIM ↑ HDR-VDP3 ↑
(x,y) 36.6 0.969 7.95
(r,g,b) 48.4 0.996 9.53
(x,y,r,g,b) 51.4 0.998 9.74

Table 1. Ablation of MLP (2-layer, 16 nodes) performance when
predicting gamma map with just position information (x,y) or SDR
pixel values (r,g,b) compared to having access to both for predic-
tion (x,y,r,g,b). We report results on the manually tone-mapped
dataset. The experiment demonstrates the benefit of the SDR guide
image and the positional embedding in our application. While the
image can be closely reconstructed with just a global transform of
an (r,g,b) MLP, this experiment also demonstrates that the local
operations described with positional embeddings (x,y) can have a
large impact on reconstruction fidelity

how Gamma-MLP’s performance reduces significantly if
the input is only positional coordinates. This experiment
also shows the value of the positional embedding (x,y) in
addition to the SDR input. While a global (r,g,b) MLP can
achieve relatively close reconstructions, local tone mapping
operations can be accounted for with additional (x,y) input.

Finally, in Table 2 the Gamma-MLP results are com-
pared against the deep learning based inverse tone mapping
and image translation methods tested by Chen et al. [1]
on their 117-image UHD test set. We show that when
trained on a particular tone mapper, these methods are out-
performed in the reproduction of that function by standard
Gain map encoding using HEIC, so they are not a viable
replacement for gain map encoding.

2. Experiments
In the experimental section of the main paper, the dataset of
Cyriac et al. [2] is employed to evaluate the performance
of the proposed method (Gamma-MLP) against the existing
framework. We augment this dataset for our quantitative
comparisons by processing the HDR image through addi-
tional automatic tone mapping methods to complement the
manual tone mapping results. In Fig. 3, the performance
of the different tone mapping methods is evaluated quali-
tatively. The gain maps demonstrate that these represent
significantly different reconstruction tasks, explaining the
variation in their respective results. In addition, it is demon-
strated that the automatically tone-mapped images represent
challenging cases as they are more likely to saturate detail
and amplify noise.

Since the bar for reconstruction quality in encoding ap-



Method PSNR ↑ SSIM ↑
ResNet [8] 37.3 0.972
Pix2pix [9] 25.8 0.878
CycleGAN [18] 21.3 0.850
HDRNet [6] 35.7 0.966
CSRNet [7] 35.0 0.963
Ada-3DLUT [17] 36.2 0.966
Deep SR-ITM [10] 37.1 0.969
JSI-GAN [11] 37.0 0.969
AGCM+LE [1] 37.6 0.973
AGCM [1] 36.9 0.966
Gain-HEIC 39.2 0.972
MLP-ITM [14] 41.6 0.988
Gain-MLP 41.2 0.986
Gamma-MLP 41.5 0.988

Table 2. Using the 117 UHD image test dataset of Chen et al.
[1], where HDR images are automatically converted to SDR us-
ing Youtube’s HDR10 pipeline, the proposed MLP (Gain-MLP)
is compared to deep learning methods for HDR generation (op-
timized on the associated training set). This experiment confirms
that predictive methods do not meet the quality standards of the en-
coding application, even when trained on the same tone mapping
function as the test set.

plications is very high it can be difficult to qualitatively dif-
ferentiate competing results. In Fig. 2 we supplement main
body Fig. 6 with ∆E00 error maps, which clip at a value
of 10. These maps show several cases where the proposed
method preserves image details where others fail (e.g., the
sky of column 1, the legs of column 2, the head and sky of
column 3 and the hands of the last column).

While the results in the main paper were averaged over
all tone mapping methods from the dataset of Cyriac et al.
and Chen et al. [1], Table 3 splits the results between these
subsets. It can be observed that in the conventional ap-
proach, reconstruction quality varies significantly between
tone mapping methods for the Cyriac dataset, but the pro-
posed MLP is relatively consistent between these subsets.
Comparing results from different HDR sources (between
Cyriac et al. and Chen et al. datasets) the conventional
approach maintains reconstruction quality but its size in-
creases, while the proposed MLP has a lower quality recon-
struction if the network size is maintained.

Finally, representative examples of the artifacts that can
occur with the proposed MLP are demonstrated in Fig. 4.
When large areas of detail are lost in the SDR image during
the tone mapping process, more information is required to
reconstruct the area, pushing the representation limits of the
proposed and conventional methods.
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Figure 2. Qualitative comparison between the best performing methods of the quantitative comparison on images of the dataset of Cyriac
et al. Errors are visualized as ∆E00 heatmaps, clipped at a value of 10. Since the present application is encoding, much of the error is at
or below the threshold of visibility for all methods (1 ∆E00). However, the tested methods differ in their accuracy in representing various
problematic areas (e.g., the sky in column 1, the headlights and legs in column 2, the head in column 3 and the hands in the last column).
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Figure 3. The tone mapping methods tested in the experimental section [3, 12, 15] result in qualitatively different SDR renditions of the
HDR source. The methods’ gain maps are visualized to illustrate how the HDR reconstruction task varies for different tone mapping
conditions. In some instances, the results are brighter or darker, sharper, or more saturated. In general, image detail is preserved better in
manual tone mapping, while automatic tone mapping tends to over-saturate dark images and amplify noise (e.g., the last two rows.)



PSNR ↑ ∆E00 ↓ SSIM ↑ ∆EIPT ↓ HDR-VDP3 ↑ Size (KB) ↓
Gain-JPEG 38.1 1.81 0.9721 8.86 8.13 15
Gain-HEIC 39.0 1.63 0.9768 7.93 8.42 14

Gain-JPEG-XL 37.2 1.44 0.9435 7.71 7.94 10
Gamma-JPEG 44.3 0.89 0.9874 5.17 9.26 14

Cyriac et al. [2] Gamma-HEIC 45.2 0.80 0.9891 4.68 9.37 12
Manual TM Gamma-JPEG-XL 43.1 0.76 0.9553 4.78 8.96 9

MLP-iTM 51.1 0.53 0.9974 2.32 9.83 34
Direct-MLP 47.6 0.92 0.9918 3.61 9.50 10
Gain-MLP 48.8 0.99 0.9945 3.59 9.15 10

Gamma-MLP 51.4 0.53 0.9978 2.32 9.74 10
Gain-JPEG 39.0 2.08 0.9691 9.08 8.01 15
Gain-HEIC 39.9 1.92 0.9731 8.22 8.24 13

Gain-JPEG-XL 38.2 1.55 0.9482 7.23 7.99 9
Gamma-JPEG 42.5 1.23 0.9814 6.28 8.85 15

Cyriac et al. [2] Gamma-HEIC 43.3 1.13 0.9837 5.72 8.98 13
Reinhard et al. [15] Gamma-JPEG-XL 41.4 0.97 0.9550 5.33 8.66 11

MLP-iTM 48.8 0.86 0.9908 4.09 9.22 34
Direct-MLP 47.7 0.91 0.9883 4.48 9.18 10
Gain-MLP 49.8 0.79 0.9933 3.47 9.25 10

Gamma-MLP 50.6 0.69 0.9933 3.34 9.29 10
Gain-JPEG 36.0 2.43 0.9510 11.23 7.33 16
Gain-HEIC 36.8 2.29 0.9565 10.33 7.60 14

Gain-JPEG-XL 35.2 1.87 0.9305 9.31 7.34 10
Gamma-JPEG 41.0 1.28 0.9753 6.75 8.56 16

Cyriac et al. [2] Gamma-HEIC 41.6 1.20 0.9776 6.26 8.71 15
Larson et al. [12] Gamma-JPEG-XL 39.9 1.01 0.9491 5.78 8.39 9

MLP-iTM 48.3 0.70 0.9948 3.47 9.39 34
Direct-MLP 47.6 0.76 0.9912 3.77 9.32 10
Gain-MLP 48.0 0.75 0.9955 3.40 9.18 10

Gamma-MLP 49.6 0.73 0.9930 3.84 9.14 10
Gain-JPEG 41.2 1.89 0.9731 8.24 8.54 12
Gain-HEIC 42.3 1.70 0.9769 7.34 8.69 10

Gain-JPEG-XL 40.6 1.39 0.9509 6.47 8.38 7
Gamma-JPEG 42.6 1.33 0.9780 6.66 8.80 13

Cyriac et al. [2] Gamma-HEIC 43.3 1.24 0.9803 6.15 8.91 11
Drago et al. [3] Gamma-JPEG-XL 41.7 1.06 0.9513 5.67 8.63 9

MLP-iTM 46.5 1.05 0.9881 5.48 9.01 34
Direct-MLP 47.6 0.86 0.9861 4.75 9.06 10
Gain-MLP 49.6 0.74 0.9920 3.99 9.11 10

Gamma-MLP 49.6 0.73 0.9930 3.84 9.14 10
Gain-JPEG 37.0 2.58 0.9743 10.73 7.57 37
Gain-HEIC 38.0 2.35 0.9780 9.75 7.76 41

Gain-JPEG-XL 37.1 2.40 0.9757 10.32 7.45 21
Gamma-JPEG 36.9 2.10 0.9747 10.74 7.66 39

Chen et al. [1] Gamma-HEIC 37.7 2.03 0.9774 10.05 7.77 40
Youtube TM Gamma-JPEG-XL 36.8 1.95 0.9729 10.47 7.15 22

MLP-iTM 41.6 1.22 0.9879 6.04 8.25 34
Direct-MLP 41.1 1.35 0.9861 6.67 8.22 10
Gain-MLP 41.2 1.56 0.9861 6.88 8.19 10

Gamma-MLP 41.5 1.25 0.9876 6.19 8.26 10

Table 3. Quantitative comparison between traditional encoding techniques and the proposed MLP broken up for tone mapping (TM)
variations of Cyriac et al. [2] (Manual, Drago et al. [3], Larson et al. [12], Reinhard et al. [15]), and Chen et al. [1] (Youtube) datasets.
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Figure 4. The proposed method (Gamma-MLP) produces artifacts
when the ground truth SDR image has lost significant detail due
to over-saturation in the tone mapping stage. As a result, details
are lost (e.g., the monk’s robes in the top row and the red jacket in
the bottom row). The conventional framework results also suffer
in these scenarios (Gain-JPEG included for comparison).
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