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8. Data Detail

Table 7. Datasets overview. We provide the quantities of labeled
(Dl) and unlabeled (Du) images, along with their respective class
distributions.

Dataset Balanced Labeled (Dl) Unlabeled (Du)

#Image #Class #Image #Class
CUB-200-2011 [43] ✁ 1.5k 100 4.5k 200
Stanford Cars [18] ✁ 2.0k 98 6.1k 196

FGVC-Aircraft [25] ✁ 1.7k 50 5.0k 100
CIFAR100 [19] ✁ 20.0k 80 30.0k 100

ImageNet-100 [38] ✁ 31.9k 50 95.3k 100
Herbarium 19 [37] ✂ 8.9k 341 25.4k 683

Table 7 provides a comprehensive overview of the
dataset statistics used in our experiments. Notably, generic
datasets such as CIFAR-100 and ImageNet-100 contain
substantially larger volumes of unlabeled data (e.g., 95.3k
in ImageNet) compared to fine-grained datasets like CUB
(4.5k) and Stanford Cars (6.1k). This discrepancy in unla-
beled sample availability directly influences the selection
process governed by the confidence thresholds ω and ε,
thereby affecting the overall efficacy of both Intra-CL and
Inter-CU in facilitating supervised contrastive learning (S-
CL) and novel category discovery.
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Figure 8. Supervised contrastive learning (S-CL) without un-
labeled data. Traditional S-CL excludes unlabeled data, which
contains both known and novel samples.

Fig. 8 illustrates the data view in traditional supervised
contrastive learning (S-CL). Since unlabeled data lacks an-
notations, S-CL is typically applied only to labeled data.
However, labeled data includes only known classes (e.g.,
bird, dog, cat) and excludes novel classes (e.g., elephant,
panda), leading to poor performance on novel classes in
parametric GCD methods [3, 44, 45].
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Figure 9. Supervised Contrastive Learning (S-CL) in GCD: Non-
Parametric vs. Parametric.

9. Paradigm of Our AllGCD

GCD baselines are generally divided into parametric and
non-parametric methods. Vaze et al. introduced GCD us-
ing both unsupervised and supervised contrastive learning
(S-CL). Non-parametric approaches like DCCL [51] and
CMS [5] follow this setup. In contrast, AllGCD is built on
the parametric GCD framework [45], which integrates CL
into classifier learning and has shown superior performance.
Below, we clarify key distinctions from related works.

Compared to DCCL [51]: (1) Setting: DCCL is non-
parametric; AllGCD targets the more effective parametric
setting (Fig.9). (2) Motivation: DCCL models inter-class
concepts; we reveal S-CL’s limitations in parametric GCD
due to scarce labels. (3) Mechanism: DCCL aligns seman-
tic concepts, while AllGCD enhances prototype learning via
voting-based S-CL using unlabeled data.

Compared to OpenCon [35]: (1) We show S-CL is less
effective for novel class discovery in parametric GCD
(Fig. 9), unlike in non-parametric settings. (2) We are the
first to identify this limitation and propose a voting strategy
to address it.

10. Hyperparameter Sensitivity Analysis

We analyze the sensitivity of ω and ε on fine-grained
and generic datasets. (1) Fig. 10 shows ω works
best in [0.7, 0.75] for CUB/SCars and [0.8, 0.85] for
CIFAR100/ImageNet-100, while ε in [0.7, 0.75] across all.
(2) This shift reflects dataset scale—fine-grained datasets
(e.g., 1.5k in Sars vs. 31.9k in ImageNet-100) yield fewer
confident samples at a higher threshold (e.g., ω=0.85). (3)
Thus, ω and ε can be selected by dataset type (fine-grained
or generic) without dataset-specific tuning. (4) Meanwhile,
our method is SOTA (except for LegoGCD on ImageNet-
100) based on mean within the [0.65–0.85], confirming its
robustness.



Figure 10. ‘All’ Acc. w.r.t. ω and ε.

Table 8. ‘All’ Acc. com-
parison (with Variance).

Method Scars Img-100

GCD 39.0 74.1
DCCL - 80.5

PromptCAL 50.2 83.1
SimGCD 53.8 83.0
SPTNet 59.0 85.4

LegoGCD 57.3 86.3
CMS 56.0 84.7

InfoSieve 55.7 80.5
Ours (Mean) 59.1 85.90
Ours (Var.) ±0.83 ±0.09

Table 9. Classification results on CUB and Stanford Cars with
DINOv2 [27].

Method CUB Stanford Cars

All Old New All Old New
k-means 67.6 60.6 71.1 29.4 24.5 31.8

GCD [41] 71.9 71.2 72.3 65.7 67.8 64.7
SimGCD [45] 71.5 78.1 68.3 71.5 81.9 66.6
µGCD [42] 74.0 75.9 73.1 76.1 91.0 68.9
SPTNet [44] 76.3 79.5 74.6 - - -

AllGCD (ours) 78.4 82.8 76.2 76.2 88.3 70.4

Table 10. Comparison of parameters and training time across para-
metric GCD methods.

Method Parameters Training Time

Backbone Classifier Projector Extra CUB Stanford Cars CIFAR100
SimGCD [45] ✁ ✁ ✁ ✂ 4 h 15 m 6 h 2 m 31 h 13 m
LegoGCD [3] ✁ ✁ ✁ ✂ 4 h 25 m 6 h 58 m 31 h 40 m
SPTNet [44] ✁ ✁ ✁ ✁ 20 h 34 m 41 h 43 m 115 h 2 m

AllGCD (Ours) ✁ ✁ ✁ ✂ 5 h 52 m 7 h 41 m 34 h 41 m

11. Results with DINOv2
We further validate the effectiveness of AllGCD by employ-
ing the ViT-B/14 model pre-trained with DINOv2 [27] on
the CUB and Stanford Cars datasets. Our method consis-
tently outperforms recent state-of-the-art approaches, such
as µGCD and SPTNet, demonstrating its robustness across
different architectures. Specifically, on CUB, AllGCD im-
proves novel class discovery accuracy by 7.9% compared to
the baseline SimGCD and by 6.9% relative to SPTNet. On
Stanford Cars, it enhances novel class discovery by 3.8%
and surpasses µGCD by 1.5% in ‘New’ accuracy. These
results highlight the adaptability and superior performance
of AllGCD, reinforcing its efficacy in novel category dis-
covery even when applied to alternative backbone.

12. Results on Other Parametric Methods
12.1. Limited S-CL in parametric methods
In this section, we explore novel class discovery with and
without supervised contrastive learning (S-CL) in two com-

(a) LegoGCD (b) SPTNet

Figure 11. ‘New’ class accuracy in LegoGCD and SPTNet with
and without supervised contrastive learning (S-CL). The accu-
racy remains nearly unchanged, highlighting that CL using only
labeled data is insufficient for classifying novel classes in previous
parametric GCD methods.

petitive parametric methods, LegoGCD [3] and SPTNet
[44]. Overall, both methods fail to improve the accuracy of
novel classes when CL is restricted to labeled data. From
the orange and blue bars in Fig. 11a and Fig. 11b, we
can see that the ‘New’ class accuracy does not improve
with CL in either LegoGCD or SPTNet. Furthermore, we
plot the ‘New’ class accuracy during training in Fig. 11a
and Fig. 11b. Obviously, the accuracy with CL shows lit-
tle difference compared to without CL, as the lines nearly
overlap. Notably, we reproduced SPTNet using SimGCD
models, achieving ‘Old’/‘New’ results of 78.4%/56.1% on
CUB, 78.9%/47.4% on Stanford Cars, and 83.1%/76.0% on
CIFAR100. CL was then removed from these models to
generate Fig. 11b.

12.2. Integration of AllGCD with LegoGCD
To further substantiate the effectiveness of AllGCD, we in-
tegrate its proposed components into other parametric meth-
ods, such as LegoGCD [3]. As presented in Table 11,
our approach consistently enhances the accuracy of both
‘Old’ and ‘New’ classes across fine-grained and generic
datasets. Specifically, AllGCD achieves performance gains
of 1.6% and 3.5% on CUB, 1.5% and 3.1% on Stanford
Cars, and 1.6% and 0.3% on CIFAR-100 compared to Le-
goGCD. These results underscore the importance of lever-
aging a larger volume of unlabeled data, which substantially
strengthens contrastive learning and enhances novel cate-
gory discovery.

13. Parameters and Training time Analysis
Table 10 provides a comprehensive comparison of the pa-
rameter count and training efficiency across various para-
metric methods, including LegoGCD and SPTNet. A ✁ in-
dicates shared components, while SPTNet incorporates ad-
ditional data prompts. While our approach moderately in-
creases training time—requiring 1 h 37 m on CUB, 1 h 39 m
on Stanford Cars, and 3 h 18 m on CIFAR-100 compared to



(a) CUB (b) CIFAR100

Figure 12. ‘New’ class accuracy during training in LegoGCD
with and without S-CL. The accuracy shows no significant
change regardless of the use of S-CL in both CUB and CIFAR100.

Table 11. Classification results of LegoGCD[3] combined with
our components on fine-grained and generic datasets.

Datasets AllGCD ACC

All Old New
CUB 63.8 71.9 59.8
CUB ✁ 66.7+2.9 73.5+1.6 63.3+3.5

Stanford Cars 57.3 75.7 48.4
Stanford Cars ✁ 59.9+2.6 77.2+1.5 51.5+3.1

CIFAR100 81.8 81.4 82.5
CIFAR100 ✁ 82.5+0.7 83.1+1.6 82.8+0.3

the baseline SimGCD—it remains substantially more effi-
cient than SPTNet, which requires over five times the train-
ing time of SimGCD. Despite this efficiency, our method
achieves highly competitive performance, striking an opti-
mal balance between classification accuracy and computa-
tional cost.
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